Hierarchical Co3O4 anode for high-performance Na-ion battery

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2024-11-01 DOI:10.1016/j.electacta.2024.145309
Mewin Vincent , Sandra Sajeev , Monika Srivastava , Ewa Kowalska , Sugarthi Srinivasan , Damian Kowalski
{"title":"Hierarchical Co3O4 anode for high-performance Na-ion battery","authors":"Mewin Vincent ,&nbsp;Sandra Sajeev ,&nbsp;Monika Srivastava ,&nbsp;Ewa Kowalska ,&nbsp;Sugarthi Srinivasan ,&nbsp;Damian Kowalski","doi":"10.1016/j.electacta.2024.145309","DOIUrl":null,"url":null,"abstract":"<div><div>Despite excellent theoretical perditions, sodium-ion batteries have not yet evolved as a reliable replacement of current lithium-ion technology, mostly due to a lack of high capacity-long cycling electrodes. Among the various candidates cobalt(II,III)oxide, Co<sub>3</sub>O<sub>4</sub>, is expected to deliver an excellent electrochemical characteristics, owing to its multi-electron conversion type nature, however, usually fails in terms of performance due to the electrode inconsistencies, associated with the poor conductivity and volumetric fluctuations. Herein, we report morphology and crystallinity engineering of the Co<sub>3</sub>O<sub>4</sub> nanostructure to substantially improve the charge storage as well as cycling performance. Largely interconnected hierarchical Co<sub>3</sub>O<sub>4</sub> synthesized via highly reproducible and industrially viable approach demonstrated efficient charge transport kinetics and excellent volume expansion buffering under the de/sodiation cycles. With its unique structural properties hierarchical electrode delivered an excellent reversible capacity (70 % of theoretical limit @25 mAg<sup>-1</sup>), rate performance (123 mAhg<sup>-1</sup> @1Ag<sup>-1</sup>) and stable cycling (82 % after 250 cycles @1Ag<sup>-1</sup>). <em>In-situ</em> Raman analysis of the electrode reactions revealed conversion type Na-ion storage in the hierarchical type of electrodes.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"509 ","pages":"Article 145309"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624015457","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite excellent theoretical perditions, sodium-ion batteries have not yet evolved as a reliable replacement of current lithium-ion technology, mostly due to a lack of high capacity-long cycling electrodes. Among the various candidates cobalt(II,III)oxide, Co3O4, is expected to deliver an excellent electrochemical characteristics, owing to its multi-electron conversion type nature, however, usually fails in terms of performance due to the electrode inconsistencies, associated with the poor conductivity and volumetric fluctuations. Herein, we report morphology and crystallinity engineering of the Co3O4 nanostructure to substantially improve the charge storage as well as cycling performance. Largely interconnected hierarchical Co3O4 synthesized via highly reproducible and industrially viable approach demonstrated efficient charge transport kinetics and excellent volume expansion buffering under the de/sodiation cycles. With its unique structural properties hierarchical electrode delivered an excellent reversible capacity (70 % of theoretical limit @25 mAg-1), rate performance (123 mAhg-1 @1Ag-1) and stable cycling (82 % after 250 cycles @1Ag-1). In-situ Raman analysis of the electrode reactions revealed conversion type Na-ion storage in the hierarchical type of electrodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能钠离子电池的分层 Co3O4 阳极
尽管钠离子电池的理论熵值极高,但它尚未发展成为当前锂离子技术的可靠替代品,主要原因是缺乏高容量、长循环电极。在各种候选钴(II,III)氧化物(Co3O4)中,Co3O4 因其多电子转换类型的性质而有望提供出色的电化学特性,但由于电极导电性差和体积波动相关的不一致性,其性能通常不尽如人意。在此,我们报告了 Co3O4 纳米结构的形态和结晶度工程,以大幅提高电荷存储和循环性能。通过高度可重复性和工业可行性的方法合成的大面积相互连接的分层 Co3O4 在脱氧/钠化循环中表现出高效的电荷传输动力学和出色的体积膨胀缓冲能力。凭借其独特的结构特性,纳米片电极具有出色的可逆容量(理论极限的 70% @25 mAg-1)、速率性能(123 mAhg-1 @ 1Ag-1)和稳定的循环性能(250 次循环后的 82% @ 1Ag-1)。对电极反应的原位拉曼分析表明,在分层型电极中存在转化型钠离子存储。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
One-pot Synthesis of Heteroatom-rich Anthraquinone-based Benzoxazine-linked Porous organic polymers for high performance supercapacitors Tailoring the Electronic Conductivity of Coating Layer on the Composite Separator for Li Metal Anode Study on the treatment of carbon black for slurry electrodes of all-iron redox flow batteries Unveiling Manganese Malate as an Electrode Material for Supercapacitors Electrochemical Synthesis and Carbon Doping of Nanostructured Iron Fluorides from the Selection of Metal Current Collectors in Lithium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1