Signal amplification platform based on 2D MOF-on-MOF architectures-derived Co-decorated carbon@nitrogen-doped porous carbon for enhanced electrochemical acetaminophen sensing
Xue Zhang , Xingpai Cai , Tingting Zhang , Zhuzhen Chen , Wangxing Cheng , Zhenbao Li , Linwei Chen , Nannan Lu
{"title":"Signal amplification platform based on 2D MOF-on-MOF architectures-derived Co-decorated carbon@nitrogen-doped porous carbon for enhanced electrochemical acetaminophen sensing","authors":"Xue Zhang , Xingpai Cai , Tingting Zhang , Zhuzhen Chen , Wangxing Cheng , Zhenbao Li , Linwei Chen , Nannan Lu","doi":"10.1016/j.electacta.2024.145311","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) carbon-carbon hybrids derived from metal-organic frameworks (MOFs) are regarded as an intriguing type of electrode material in electrochemical sensing. In this work, a Co-decorated carbon@nitrogen-doped porous carbon heterostructure (Co/C@NC) was prepared via the simple calcination of 2D ZIF-L(Co)@ZIF-8. In this MOF-on-MOF precursor, the outer ZIF-8 layer not only prevents the collapse of ZIF-L(Co) during calcination but also endows the outer carbon an extended surface area and porous structure for more accessible active sites and a fast mass transfer process. Meanwhile, the formed CoNPs could facilitate the generation of graphitic carbon layers, which enhances electrocatalytic activity and boosted conductivity. Owing to these merits, the Co/C@NC-based sensor displays high electrochemical activity for acetaminophen (APAP) detection with a wide linear range (4 × 10<sup>–7</sup> - 2 × 10<sup>–4</sup> M) and a lower detection limit (8.2 × 10<sup>–8</sup> M). The constructed sensor has been utilized for the analysis of APAP in real samples, yielding acceptable recovery between 96.6% and 104.0%. This work presents an efficient and convenient method for designing MOF-on-MOF-derived 2D carbon-carbon hybrids, which hold a promising prospect in electrochemical analysis.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"509 ","pages":"Article 145311"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624015470","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) carbon-carbon hybrids derived from metal-organic frameworks (MOFs) are regarded as an intriguing type of electrode material in electrochemical sensing. In this work, a Co-decorated carbon@nitrogen-doped porous carbon heterostructure (Co/C@NC) was prepared via the simple calcination of 2D ZIF-L(Co)@ZIF-8. In this MOF-on-MOF precursor, the outer ZIF-8 layer not only prevents the collapse of ZIF-L(Co) during calcination but also endows the outer carbon an extended surface area and porous structure for more accessible active sites and a fast mass transfer process. Meanwhile, the formed CoNPs could facilitate the generation of graphitic carbon layers, which enhances electrocatalytic activity and boosted conductivity. Owing to these merits, the Co/C@NC-based sensor displays high electrochemical activity for acetaminophen (APAP) detection with a wide linear range (4 × 10–7 - 2 × 10–4 M) and a lower detection limit (8.2 × 10–8 M). The constructed sensor has been utilized for the analysis of APAP in real samples, yielding acceptable recovery between 96.6% and 104.0%. This work presents an efficient and convenient method for designing MOF-on-MOF-derived 2D carbon-carbon hybrids, which hold a promising prospect in electrochemical analysis.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.