Carolina Helena Franzon, Aurélien Roggero, Sébastien Pruvost, Jean-François Gérard
{"title":"Ambient moisture influence on the secondary relaxations of epoxy-amine networks with different crosslink densities","authors":"Carolina Helena Franzon, Aurélien Roggero, Sébastien Pruvost, Jean-François Gérard","doi":"10.1016/j.polymer.2024.127750","DOIUrl":null,"url":null,"abstract":"<div><div>The molecular mobility of polyepoxy networks synthesized from diglycidyl ether of bisphenol-A (DGEBA) and cured with aliphatic diamines featuring varying polypropylene glycol (PPG) backbone lengths was investigated. The influence of ambient storage conditions, notably absorbed moisture, in conjunction with the network crosslink density on physical properties, was explored by using multiple techniques, including differential scanning calorimetry, dielectric and mechanical spectroscopies. In addition to known effects on glass transition and its dynamic manifestations, significant effects on secondary relaxation modes were observed, further highlighting the importance of controlling initial sample conditions when conducting molecular mobility studies. A bimodal <span><math><mi>β</mi></math></span>-relaxation was observed in the presence of absorbed moisture as a result of an additional water-related mode, <span><math><msub><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, ascribed to hydroxyether groups interacting with water.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"315 ","pages":"Article 127750"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124010863","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The molecular mobility of polyepoxy networks synthesized from diglycidyl ether of bisphenol-A (DGEBA) and cured with aliphatic diamines featuring varying polypropylene glycol (PPG) backbone lengths was investigated. The influence of ambient storage conditions, notably absorbed moisture, in conjunction with the network crosslink density on physical properties, was explored by using multiple techniques, including differential scanning calorimetry, dielectric and mechanical spectroscopies. In addition to known effects on glass transition and its dynamic manifestations, significant effects on secondary relaxation modes were observed, further highlighting the importance of controlling initial sample conditions when conducting molecular mobility studies. A bimodal -relaxation was observed in the presence of absorbed moisture as a result of an additional water-related mode, , ascribed to hydroxyether groups interacting with water.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.