Pressure-Dependent Shape and Edge Configurations of MoS2 by Kinetic Monte Carlo Simulation.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-11-12 Epub Date: 2024-11-01 DOI:10.1021/acsnano.4c12342
Yoonbeen Kang, Rakwoo Chang, Sang-Yong Ju
{"title":"Pressure-Dependent Shape and Edge Configurations of MoS<sub>2</sub> by Kinetic Monte Carlo Simulation.","authors":"Yoonbeen Kang, Rakwoo Chang, Sang-Yong Ju","doi":"10.1021/acsnano.4c12342","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the influence of precursor pressures is crucial for optimizing the properties of MoS<sub>2</sub> grown through the chemical vapor deposition (CVD) process. In this study, we use kinetic Monte Carlo (KMC) simulations to investigate how varying the pressures of molybdenum (<i>P</i><sub>Mo</sub>) and sulfur (<i>P</i><sub>S</sub>) impacts the structural properties of MoS<sub>2</sub>, such as grain shape and edge configurations. The simulations differentiate three distinct regimes─growth, steady-state, and etching─each defined by specific <i>P</i><sub>Mo</sub>, <i>P</i><sub>S</sub>, and the most probable atomic sites for filling or etching. We further explore how these regimes influence the atomic configuration of MoS<sub>2</sub>, particularly the formation of different edge structures like sulfur zigzag (ZZ<sub>S</sub>), molybdenum zigzag (ZZ<sub>Mo</sub>), and their respective derivatives. A pressure diagram based on the equations of state and most probable atomic sites was constructed for each regime and validated by comparing predicted ZZ-derived edges to experimental observations. Additionally, the study examines the impact of etching on various line defects, providing insights into the evolution of the MoS<sub>2</sub> edges during the CVD process. These findings underscore the importance of controlling both growth and cessation phases in the CVD process to customize edge configurations, with significant implications for chemical functionalization, catalysis, and the electronic properties of transition metal dichalcogenides.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"31495-31505"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12342","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the influence of precursor pressures is crucial for optimizing the properties of MoS2 grown through the chemical vapor deposition (CVD) process. In this study, we use kinetic Monte Carlo (KMC) simulations to investigate how varying the pressures of molybdenum (PMo) and sulfur (PS) impacts the structural properties of MoS2, such as grain shape and edge configurations. The simulations differentiate three distinct regimes─growth, steady-state, and etching─each defined by specific PMo, PS, and the most probable atomic sites for filling or etching. We further explore how these regimes influence the atomic configuration of MoS2, particularly the formation of different edge structures like sulfur zigzag (ZZS), molybdenum zigzag (ZZMo), and their respective derivatives. A pressure diagram based on the equations of state and most probable atomic sites was constructed for each regime and validated by comparing predicted ZZ-derived edges to experimental observations. Additionally, the study examines the impact of etching on various line defects, providing insights into the evolution of the MoS2 edges during the CVD process. These findings underscore the importance of controlling both growth and cessation phases in the CVD process to customize edge configurations, with significant implications for chemical functionalization, catalysis, and the electronic properties of transition metal dichalcogenides.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过动力学蒙特卡洛模拟研究 MoS2 与压力有关的形状和边缘配置。
了解前驱体压力的影响对于优化通过化学气相沉积(CVD)工艺生长的 MoS2 的特性至关重要。在本研究中,我们使用动力学蒙特卡罗(KMC)模拟来研究改变钼(PMo)和硫(PS)的压力如何影响 MoS2 的结构特性,如晶粒形状和边缘配置。模拟区分了三种不同的状态--生长、稳态和蚀刻--每种状态都由特定的 PMo、PS 以及最有可能进行填充或蚀刻的原子位点所定义。我们进一步探讨了这些状态如何影响 MoS2 的原子构型,尤其是不同边缘结构的形成,如 "之 "字形硫(ZZS)、"之 "字形钼(ZZMo)及其各自的衍生物。根据状态方程和最可能的原子位点,为每种机制构建了压力图,并通过将预测的 ZZ 衍生边缘与实验观察结果进行比较来验证。此外,该研究还考察了蚀刻对各种线缺陷的影响,从而深入了解了 CVD 过程中 MoS2 边缘的演变。这些发现强调了在 CVD 过程中控制生长和停止阶段以定制边缘配置的重要性,对化学功能化、催化和过渡金属二钙化物的电子特性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Amplification of Metalloregulatory Proteins in Macrophages by Bioactive ZnMn@SF Hydrogels for Spinal Cord Injury Repair In Situ Phase Transformation-Enabled Metal–Organic Frameworks for Efficient CO2 Electroreduction to Multicarbon Products in Strong Acidic Media Voltage-Gated Switching of Moiré Patterns in Epitaxial Molecular Crystals Correction to “Sequential Treatment of Bioresponsive Nanoparticles Elicits Antiangiogenesis and Apoptosis and Synergizes with a CD40 Agonist for Antitumor Immunity” Ultrahigh Surface Area Nanoporous Carbons Synthesized via Hypergolic and Activation Reactions for Enhanced CO2 Capacity and Volumetric Energy Density
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1