Alternate MHC I antigen presentation pathways allow CD8+ T-cell recognition and killing of cancer cells in the absence of ß2M or TAP.

IF 8.1 1区 医学 Q1 IMMUNOLOGY Cancer immunology research Pub Date : 2024-11-01 DOI:10.1158/2326-6066.CIR-24-0320
Freidrich Cruz, Laura A A Orellano, Amanda Chan, Kenneth L Rock
{"title":"Alternate MHC I antigen presentation pathways allow CD8+ T-cell recognition and killing of cancer cells in the absence of ß2M or TAP.","authors":"Freidrich Cruz, Laura A A Orellano, Amanda Chan, Kenneth L Rock","doi":"10.1158/2326-6066.CIR-24-0320","DOIUrl":null,"url":null,"abstract":"<p><p>Major histocpmpatibilty complex class I (MHC I) antigen presentation allows CD8+ T cells to detect and eliminate cancerous or virally infected cells. The MHC I pathway is not essential for cell growth and viability and consequently cancers and viruses can evade control by CD8+ T cells by inactivating antigen presentation. In cancers, two common ways for this evasion are the loss of either the MHC I light chain (ß2M) or the cytosol-to-endoplasmic reticulum (ER) peptide transporter (TAP). ß2M-null cells are generally thought to lack the MHC I pathway because the MHC I heavy chain by itself lacks the proper conformation for peptide display. TAP-null cells are thought to have severely defective MHC I antigen presentation because they are incapable of supplying peptides from the cytosol to MHC I molecules in the ER. However, we have found that highly reactive memory CD8+ T cells could still recognize cells that completely lacked ß2M or TAP. This was at least in part because in TAPnull cells, the Sec62 component of the Sec61 translocon supported the transfer of cytosolic peptides into the ER. In ß2M-negative cells, free MHC I heavy chains were able to bind peptides and assume a conformation that was sufficiently recognized by CD8+ T cells. This process required ER chaperones and the peptide-loading complex. We found that these mechanisms supported antigen presentation at a level that was sufficient for memory CD8+ T cells to kill melanoma cells both in vitro and in tumor-bearing mice. The implications for tumor immunotherapy are discussed.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0320","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Major histocpmpatibilty complex class I (MHC I) antigen presentation allows CD8+ T cells to detect and eliminate cancerous or virally infected cells. The MHC I pathway is not essential for cell growth and viability and consequently cancers and viruses can evade control by CD8+ T cells by inactivating antigen presentation. In cancers, two common ways for this evasion are the loss of either the MHC I light chain (ß2M) or the cytosol-to-endoplasmic reticulum (ER) peptide transporter (TAP). ß2M-null cells are generally thought to lack the MHC I pathway because the MHC I heavy chain by itself lacks the proper conformation for peptide display. TAP-null cells are thought to have severely defective MHC I antigen presentation because they are incapable of supplying peptides from the cytosol to MHC I molecules in the ER. However, we have found that highly reactive memory CD8+ T cells could still recognize cells that completely lacked ß2M or TAP. This was at least in part because in TAPnull cells, the Sec62 component of the Sec61 translocon supported the transfer of cytosolic peptides into the ER. In ß2M-negative cells, free MHC I heavy chains were able to bind peptides and assume a conformation that was sufficiently recognized by CD8+ T cells. This process required ER chaperones and the peptide-loading complex. We found that these mechanisms supported antigen presentation at a level that was sufficient for memory CD8+ T cells to kill melanoma cells both in vitro and in tumor-bearing mice. The implications for tumor immunotherapy are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在没有 ß2M 或 TAP 的情况下,替代的 MHC I 抗原递呈途径可使 CD8+ T 细胞识别并杀死癌细胞。
主要组织蛋白酶复合物 I 类(MHC I)抗原呈递允许 CD8+ T 细胞检测并消灭癌细胞或受病毒感染的细胞。MHC I 途径并非细胞生长和存活所必需,因此癌症和病毒可以通过使抗原递呈失活来逃避 CD8+ T 细胞的控制。在癌症中,有两种常见的逃避方式,一种是失去 MHC I 轻链(ß2M),另一种是失去细胞质到内质网(ER)的多肽转运体(TAP)。一般认为 ß2M 缺失的细胞缺乏 MHC I 途径,因为 MHC I 重链本身缺乏肽显示的适当构象。TAP无效细胞被认为具有严重的MHC I抗原呈递缺陷,因为它们无法从细胞质向ER中的MHC I分子提供肽。然而,我们发现,高活性记忆CD8+ T细胞仍能识别完全缺乏ß2M或TAP的细胞。这至少部分是因为在TAP缺失的细胞中,Sec61转座子的Sec62成分支持将细胞膜肽转移到ER中。在ß2M阴性细胞中,游离的MHC I重链能够与肽结合,并形成足以被CD8+ T细胞识别的构象。这一过程需要ER伴侣和多肽装载复合体。我们发现,这些机制支持的抗原呈递水平足以让记忆 CD8+ T 细胞在体外和肿瘤小鼠体内杀死黑色素瘤细胞。本文讨论了这一机制对肿瘤免疫疗法的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer immunology research
Cancer immunology research ONCOLOGY-IMMUNOLOGY
CiteScore
15.60
自引率
1.00%
发文量
260
期刊介绍: Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes. Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.
期刊最新文献
A PSMA-targeted Tri-specific Killer Engager enhances NK cell cytotoxicity against prostate cancer. Correction: CD28 Costimulatory Domain-Targeted Mutations Enhance Chimeric Antigen Receptor T-cell Function. Targeting of tumoral NAC1 mitigates myeloid-derived suppressor cell-mediated immunosuppression and potentiates anti-PD-1 therapy in ovarian cancer. Inflammatory stress determines the need for chemotherapy in patients with HER2-positive esophagogastric adenocarcinoma receiving targeted and immunotherapy. Combination CXCR4 and PD1 blockade enhances intratumoral dendritic cell activation and immune responses against hepatocellular carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1