{"title":"Influence of Cataract Causing Mutations on αA-Crystallin: A Computational Approach","authors":"Kajal Abrol, Jayarani Basumatari, Jupita Handique, Muthukumaran Rajagopalan, Amutha Ramaswamy","doi":"10.1007/s10930-024-10239-4","DOIUrl":null,"url":null,"abstract":"<div><p>The αA-crystallin protein plays a vital role in maintaining the refractive index and transparency of the eye lens. Significant clinical studies have emerged as the αA-crystallin is prone to aggregation, resulting in the formation of cataracts with varied etiologies due to mutations. This work aims to comprehend the structural and functional role of cataract-causing mutations in αA-crystallin, particularly at N-Terminal and α-Crystallin Domains, using in-silico approaches including molecular dynamics simulation. About 19 mutants of αA-crystallin along with native structure were simulated for 100 ns and the post-simulations analyses reveal pronounced dynamics of αA-crystallin due to the enhanced structure flexibility as its native compactness was lost and is witnessed mainly by the mutants R12L, R21L, R21Q, R54L, R65Q, R116C and R116H. It is observed that αA-crystallin discloses the NTD motions as the dominant one and the same was endorsed by the linear variation between Rg and the center-of-mass of αA-crystallin. Interestingly, such enhanced dynamics of αA-crystallin mutants associated with the structure flexibility is internally modulated by the dynamic exchange of secondary structure elements β-sheets and coils (R<sup>2</sup> = 0.619) during simulation. Besides, the observed pronounced dynamics of dimer interface region (β3-L6-β4 segment) of ACD along with CTD dynamics also gains importance. Particularly, the highly dynamic mutants are also characterized by enhanced non-covalent and hydrophobic interactions which renders detrimental effects towards its stability, and favours possible protein unfolding mechanisms. Overall, this study highlights the mutation-mediated structural distortions in αA-crystallin and demands the need for further potential development of inhibitors against cataract formation.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Protein Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s10930-024-10239-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The αA-crystallin protein plays a vital role in maintaining the refractive index and transparency of the eye lens. Significant clinical studies have emerged as the αA-crystallin is prone to aggregation, resulting in the formation of cataracts with varied etiologies due to mutations. This work aims to comprehend the structural and functional role of cataract-causing mutations in αA-crystallin, particularly at N-Terminal and α-Crystallin Domains, using in-silico approaches including molecular dynamics simulation. About 19 mutants of αA-crystallin along with native structure were simulated for 100 ns and the post-simulations analyses reveal pronounced dynamics of αA-crystallin due to the enhanced structure flexibility as its native compactness was lost and is witnessed mainly by the mutants R12L, R21L, R21Q, R54L, R65Q, R116C and R116H. It is observed that αA-crystallin discloses the NTD motions as the dominant one and the same was endorsed by the linear variation between Rg and the center-of-mass of αA-crystallin. Interestingly, such enhanced dynamics of αA-crystallin mutants associated with the structure flexibility is internally modulated by the dynamic exchange of secondary structure elements β-sheets and coils (R2 = 0.619) during simulation. Besides, the observed pronounced dynamics of dimer interface region (β3-L6-β4 segment) of ACD along with CTD dynamics also gains importance. Particularly, the highly dynamic mutants are also characterized by enhanced non-covalent and hydrophobic interactions which renders detrimental effects towards its stability, and favours possible protein unfolding mechanisms. Overall, this study highlights the mutation-mediated structural distortions in αA-crystallin and demands the need for further potential development of inhibitors against cataract formation.
期刊介绍:
The Protein Journal (formerly the Journal of Protein Chemistry) publishes original research work on all aspects of proteins and peptides. These include studies concerned with covalent or three-dimensional structure determination (X-ray, NMR, cryoEM, EPR/ESR, optical methods, etc.), computational aspects of protein structure and function, protein folding and misfolding, assembly, genetics, evolution, proteomics, molecular biology, protein engineering, protein nanotechnology, protein purification and analysis and peptide synthesis, as well as the elucidation and interpretation of the molecular bases of biological activities of proteins and peptides. We accept original research papers, reviews, mini-reviews, hypotheses, opinion papers, and letters to the editor.