Zilin Wang, Hong Du, Hanshen Xin, Jie Xue, Jianhua Zhang, Haoyuan Li
{"title":"Microscopic Mechanisms of Reaction-Coupled Acid Diffusion in Chemically Amplified Photoresists","authors":"Zilin Wang, Hong Du, Hanshen Xin, Jie Xue, Jianhua Zhang, Haoyuan Li","doi":"10.1021/acs.chemmater.4c02731","DOIUrl":null,"url":null,"abstract":"Diffusion in photoresists is a fundamental process that significantly impacts micro-nano manufacturing. However, it often intertwines with chemical reactions, leading to intricate kinetics that compounds our comprehension. Here, we successfully applied all-atom molecular dynamics simulations to simultaneously describe the diffusion of acids and the deprotection reactions they catalyze in extreme ultraviolet photoresists, which are critical materials for high-resolution patterning. The results show that acids hop between binding sites with the aid of the other species present in photoresists, akin to observations of ion transport in organic electrolytes. The deprotection reactions enable acids to overcome spatially prohibitive barriers. These chemical reactions also create local free volume, facilitating the motion of the organic matrix and consequently promoting acid movement. We show that by simultaneously describing diffusion and chemical reactions, atomic-level simulations can reproduce the features of experimental reaction dynamics, highlighting the potential of molecular modeling in advancing photoresist design. These insights broaden our understanding of diffusion in organic solids and serve as a theoretical reference in the development of photoresists for higher performances.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02731","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diffusion in photoresists is a fundamental process that significantly impacts micro-nano manufacturing. However, it often intertwines with chemical reactions, leading to intricate kinetics that compounds our comprehension. Here, we successfully applied all-atom molecular dynamics simulations to simultaneously describe the diffusion of acids and the deprotection reactions they catalyze in extreme ultraviolet photoresists, which are critical materials for high-resolution patterning. The results show that acids hop between binding sites with the aid of the other species present in photoresists, akin to observations of ion transport in organic electrolytes. The deprotection reactions enable acids to overcome spatially prohibitive barriers. These chemical reactions also create local free volume, facilitating the motion of the organic matrix and consequently promoting acid movement. We show that by simultaneously describing diffusion and chemical reactions, atomic-level simulations can reproduce the features of experimental reaction dynamics, highlighting the potential of molecular modeling in advancing photoresist design. These insights broaden our understanding of diffusion in organic solids and serve as a theoretical reference in the development of photoresists for higher performances.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.