{"title":"Blastocoel expansion and AMOT degradation cooperatively promote YAP nuclear localization during epiblast formation","authors":"Hinako Maeda (前田日向子), Hiroshi Sasaki (佐々木洋)","doi":"10.1016/j.ydbio.2024.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>The epiblast is a pluripotent cell population formed in the late blastocyst stage of preimplantation embryos. During the process of epiblast formation from the inner cell mass (ICM) of the early blastocyst, activation of the Hippo pathway transcription factor TEAD by the nuclear translocation of the coactivator protein YAP is required for the robust expression of pluripotency factors. However, the mechanisms that alter YAP localization during epiblast formation remain unknown. Here, we reveal two such mechanisms. Expansion of the blastocoel promotes nuclear YAP localization by increasing cytoplasmic F-actin and reducing YAP phosphorylation. Additionally, cell differentiation regulates YAP. Expression of the junctional Hippo component, AMOT, gradually decreases during epiblast formation through a tankyrase-mediated degradation. SOX2 expression in the ICM is necessary for the reduction of AMOT and YAP phosphorylation. These two mechanisms function in parallel. Thus, the blastocoel–F-actin and SOX2–AMOT axes cooperatively suppress YAP phosphorylation and promote YAP nuclear localization during epiblast formation. The cooperation of these two distinct mechanisms likely contributes to the robustness of epiblast cell differentiation.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012160624002501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The epiblast is a pluripotent cell population formed in the late blastocyst stage of preimplantation embryos. During the process of epiblast formation from the inner cell mass (ICM) of the early blastocyst, activation of the Hippo pathway transcription factor TEAD by the nuclear translocation of the coactivator protein YAP is required for the robust expression of pluripotency factors. However, the mechanisms that alter YAP localization during epiblast formation remain unknown. Here, we reveal two such mechanisms. Expansion of the blastocoel promotes nuclear YAP localization by increasing cytoplasmic F-actin and reducing YAP phosphorylation. Additionally, cell differentiation regulates YAP. Expression of the junctional Hippo component, AMOT, gradually decreases during epiblast formation through a tankyrase-mediated degradation. SOX2 expression in the ICM is necessary for the reduction of AMOT and YAP phosphorylation. These two mechanisms function in parallel. Thus, the blastocoel–F-actin and SOX2–AMOT axes cooperatively suppress YAP phosphorylation and promote YAP nuclear localization during epiblast formation. The cooperation of these two distinct mechanisms likely contributes to the robustness of epiblast cell differentiation.