Transcriptome analysis reveals the mechanism of black rockfish (Sebastes schlegelii) macrophages respond to Edwardsiella piscicida infection in vivo

IF 4.1 2区 农林科学 Q1 FISHERIES Fish & shellfish immunology Pub Date : 2024-10-31 DOI:10.1016/j.fsi.2024.109999
Xuangang Wang , Xiangfu Kong , Zhentao Chen , Hengshun Li , Ze Tao , Quanqi Zhang , Haiyang Yu
{"title":"Transcriptome analysis reveals the mechanism of black rockfish (Sebastes schlegelii) macrophages respond to Edwardsiella piscicida infection in vivo","authors":"Xuangang Wang ,&nbsp;Xiangfu Kong ,&nbsp;Zhentao Chen ,&nbsp;Hengshun Li ,&nbsp;Ze Tao ,&nbsp;Quanqi Zhang ,&nbsp;Haiyang Yu","doi":"10.1016/j.fsi.2024.109999","DOIUrl":null,"url":null,"abstract":"<div><div><em>Sebastes schlegelii</em> is an economically significant marine fish that faces serious threats from various pathogens. <em>Edwardsiella piscicida</em> is a pathogenic bacterium that primarily affects fish, including <em>S</em>. <em>schlegelii</em>, leading to severe disease. Although numerous reports have documented the transcriptome sequencing of various fish tissues in response to <em>E. piscicida</em> infection, studies focusing on specific cells remain scarce. In this study, <em>S</em>. <em>schlegelii</em> were infected by intraperitoneal injection of <em>E. piscicida</em>. Severe external clinical signs were observed in <em>E. piscicida</em>-infected <em>S</em>. <em>schlegelii</em> and pathological examination demonstrated structural damage of the head kidney following treatment with <em>E. piscicida</em>. Furthermore, macrophages were isolated from the head kidneys of both the control and <em>E. piscicida</em>-infected groups for RNA sequencing (RNA-seq). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the DEGs were closely associated with immune response and oxidative stress. Additionally, Weighted Gene Co-expression Network Analysis (WGCNA) was performed based on the data from this study and RNA-seq files of macrophages infected with <em>E. piscicida</em> in vitro, revealing that immune responses, oxidative stress, and mitochondrial damage were involved in the macrophage response to <em>E. piscicida</em> infection both in vivo and in vitro. This study provides a reference for understanding the mechanisms by which teleost immune cells respond to pathogen invasion and enhances our comprehension of teleost innate immunity.</div></div>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":"155 ","pages":"Article 109999"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050464824006442","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Sebastes schlegelii is an economically significant marine fish that faces serious threats from various pathogens. Edwardsiella piscicida is a pathogenic bacterium that primarily affects fish, including S. schlegelii, leading to severe disease. Although numerous reports have documented the transcriptome sequencing of various fish tissues in response to E. piscicida infection, studies focusing on specific cells remain scarce. In this study, S. schlegelii were infected by intraperitoneal injection of E. piscicida. Severe external clinical signs were observed in E. piscicida-infected S. schlegelii and pathological examination demonstrated structural damage of the head kidney following treatment with E. piscicida. Furthermore, macrophages were isolated from the head kidneys of both the control and E. piscicida-infected groups for RNA sequencing (RNA-seq). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the DEGs were closely associated with immune response and oxidative stress. Additionally, Weighted Gene Co-expression Network Analysis (WGCNA) was performed based on the data from this study and RNA-seq files of macrophages infected with E. piscicida in vitro, revealing that immune responses, oxidative stress, and mitochondrial damage were involved in the macrophage response to E. piscicida infection both in vivo and in vitro. This study provides a reference for understanding the mechanisms by which teleost immune cells respond to pathogen invasion and enhances our comprehension of teleost innate immunity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转录组分析揭示了黑石首鱼(Sebastes schlegelii)巨噬细胞在体内应对 Edwardsiella piscicida 感染的机制。
石首鱼是一种具有重要经济价值的海水鱼,面临着各种病原体的严重威胁。Edwardsiella piscicida 是一种致病细菌,主要影响鱼类,包括 S. schlegelii,导致严重疾病。尽管许多报告都记录了各种鱼类组织对 E. piscicida 感染反应的转录组测序,但针对特定细胞的研究仍然很少。在本研究中,通过腹腔注射 E. piscicida 感染了 S. schlegelii。经 E. piscicida 感染的 S. schlegelii 出现了严重的外部临床症状,病理检查显示,经 E. piscicida 治疗后,头部肾脏结构受损。此外,从对照组和E. piscicida感染组的头肾中分离出巨噬细胞,进行RNA测序(RNA-seq)。基因本体(GO)和京都基因组百科全书(KEGG)分析表明,DEGs与免疫反应和氧化应激密切相关。此外,根据本研究的数据和体外感染鱼腥藻的巨噬细胞的RNA-seq文件,进行了加权基因共表达网络分析(WGCNA),发现免疫反应、氧化应激和线粒体损伤参与了巨噬细胞对体内和体外鱼腥藻感染的反应。这项研究为了解远洋渔业免疫细胞应对病原体入侵的机制提供了参考,并加深了我们对远洋渔业先天免疫的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fish & shellfish immunology
Fish & shellfish immunology 农林科学-海洋与淡水生物学
CiteScore
7.50
自引率
19.10%
发文量
750
审稿时长
68 days
期刊介绍: Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.
期刊最新文献
Regulation mechanism of oxidative status, immunity and apoptosis induced by hypoxia and heat exposure via PI3K/Akt signaling pathway in Megalobrama amblycephala. A novel C-type lectin, perlucin, from the small abalone, Haliotis diversicolor involved in the innate immune defense against Vibrio harveyi infection. Survival, serum biochemical parameters, hepatic antioxidant status, and gene expression of three Nile tilapia strains under pathogenic Streptococcus agalactiae challenge. A novel perlucin with immune regulatory functions protects Litopenaeus vannamei against Vibrio parahaemolyticus infection. Host-intestinal microbiota interactions in Edwardsiella piscicida-induced lethal enteritis in big-belly seahorses: novel insights into the role of Carbohydrate-Active enzymes and host transcriptional responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1