Roger Kölegård , Lena Norrbrand , Ola Eiken , Michail E. Keramidas
{"title":"Five weeks of intermittent hand exposures to alternating cold and hot stimuli do not modify finger cold-induced vasodilatation response","authors":"Roger Kölegård , Lena Norrbrand , Ola Eiken , Michail E. Keramidas","doi":"10.1016/j.jtherbio.2024.104004","DOIUrl":null,"url":null,"abstract":"<div><div>We tested the hypothesis that prolonged intermittent hand exposures to transient contrast thermal stimuli would enhance the finger cold-induced vasodilatation (CIVD) response during localized cooling. Eight healthy men participated in a 5-week regimen, during which they immersed, thrice per week, the non-dominant (EXP) hand in 8° and 43 °C water, sequentially and at 3-min intervals, for a total period of 60 min. The contralateral (i.e., dominant) hand served as the control (CON) hand. Before and after the regimen, subjects conducted two 30-min hand cold (8 °C water) provocation trials, one with the EXP hand and the other with the CON hand. In addition, a flow-mediated dilatation test was performed in the brachial artery of the EXP arm. Regardless of the hand tested, the average finger skin temperature [CON hand: pre-trial = 10.5 (1.2)°C, post-trial = 10.8 (1.3)°C and EXP hand: pre-trial = 10.7 (1.1)°C, post-trial 10.9 (1.1)°C; <em>p</em> = 0.79], and the incidence of CIVD events [CON hand: pre-trial = 1.1 (1.2) events, post-trial = 1.2 (1.1) events and EXP hand: pre-trial = 1.1 (0.8) events, post-trial = 1.1 (0.8) events; <em>p</em> = 0.88] were not affected by the 5-week regimen. The sensation of cold-induced pain was transiently alleviated following the regimen (<em>p</em> = 0.02). The flow-mediated dilatation response of the EXP brachial artery remained unaltered [pre-trial = 5.4 (3.2)%, post-trial = 4.7 (3.6)%; <em>p</em> = 0.51]. Therefore, five weeks of intermittent hand exposures to alternating cold and hot stimuli do not improve finger temperature responsiveness to sustained localized cold.</div></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"125 ","pages":"Article 104004"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524002225","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We tested the hypothesis that prolonged intermittent hand exposures to transient contrast thermal stimuli would enhance the finger cold-induced vasodilatation (CIVD) response during localized cooling. Eight healthy men participated in a 5-week regimen, during which they immersed, thrice per week, the non-dominant (EXP) hand in 8° and 43 °C water, sequentially and at 3-min intervals, for a total period of 60 min. The contralateral (i.e., dominant) hand served as the control (CON) hand. Before and after the regimen, subjects conducted two 30-min hand cold (8 °C water) provocation trials, one with the EXP hand and the other with the CON hand. In addition, a flow-mediated dilatation test was performed in the brachial artery of the EXP arm. Regardless of the hand tested, the average finger skin temperature [CON hand: pre-trial = 10.5 (1.2)°C, post-trial = 10.8 (1.3)°C and EXP hand: pre-trial = 10.7 (1.1)°C, post-trial 10.9 (1.1)°C; p = 0.79], and the incidence of CIVD events [CON hand: pre-trial = 1.1 (1.2) events, post-trial = 1.2 (1.1) events and EXP hand: pre-trial = 1.1 (0.8) events, post-trial = 1.1 (0.8) events; p = 0.88] were not affected by the 5-week regimen. The sensation of cold-induced pain was transiently alleviated following the regimen (p = 0.02). The flow-mediated dilatation response of the EXP brachial artery remained unaltered [pre-trial = 5.4 (3.2)%, post-trial = 4.7 (3.6)%; p = 0.51]. Therefore, five weeks of intermittent hand exposures to alternating cold and hot stimuli do not improve finger temperature responsiveness to sustained localized cold.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles