Herbicides as fungicides: Targeting heme biosynthesis in the maize pathogen Ustilago maydis.

IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Molecular plant pathology Pub Date : 2024-11-01 DOI:10.1111/mpp.70007
Djihane Damoo, Matthias Kretschmer, Christopher W J Lee, Cornelia Herrfurth, Ivo Feussner, Kai Heimel, James W Kronstad
{"title":"Herbicides as fungicides: Targeting heme biosynthesis in the maize pathogen Ustilago maydis.","authors":"Djihane Damoo, Matthias Kretschmer, Christopher W J Lee, Cornelia Herrfurth, Ivo Feussner, Kai Heimel, James W Kronstad","doi":"10.1111/mpp.70007","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogens must efficiently acquire nutrients from host tissue to proliferate, and strategies to block pathogen access therefore hold promise for disease control. In this study, we investigated whether heme biosynthesis is an effective target for ablating the virulence of the phytopathogenic fungus Ustilago maydis on maize plants. We first constructed conditional heme auxotrophs of the fungus by placing the heme biosynthesis gene hem12 encoding uroporphyrinogen decarboxylase (Urod) under the control of nitrogen or carbon source-regulated promoters. These strains were heme auxotrophs under non-permissive conditions and unable to cause disease in maize seedlings, thus demonstrating the inability of the fungus to acquire sufficient heme from host tissue to support proliferation. Subsequent experiments characterized the role of endocytosis in heme uptake, the susceptibility of the fungus to heme toxicity as well as the transcriptional response to exogenous heme. The latter RNA-seq experiments identified a candidate ABC transporter with a role in the response to heme and xenobiotics. Given the importance of heme biosynthesis for U. maydis pathogenesis, we tested the ability of the well-characterized herbicide BroadStar to influence disease. This herbicide contains the active ingredient flumioxazin, an inhibitor of Hem14 in the heme biosynthesis pathway, and we found that it was an effective antifungal agent for blocking disease in maize. Thus, repurposing herbicides for which resistant plants are available may be an effective strategy to control pathogens and achieve crop protection.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 11","pages":"e70007"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530707/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70007","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pathogens must efficiently acquire nutrients from host tissue to proliferate, and strategies to block pathogen access therefore hold promise for disease control. In this study, we investigated whether heme biosynthesis is an effective target for ablating the virulence of the phytopathogenic fungus Ustilago maydis on maize plants. We first constructed conditional heme auxotrophs of the fungus by placing the heme biosynthesis gene hem12 encoding uroporphyrinogen decarboxylase (Urod) under the control of nitrogen or carbon source-regulated promoters. These strains were heme auxotrophs under non-permissive conditions and unable to cause disease in maize seedlings, thus demonstrating the inability of the fungus to acquire sufficient heme from host tissue to support proliferation. Subsequent experiments characterized the role of endocytosis in heme uptake, the susceptibility of the fungus to heme toxicity as well as the transcriptional response to exogenous heme. The latter RNA-seq experiments identified a candidate ABC transporter with a role in the response to heme and xenobiotics. Given the importance of heme biosynthesis for U. maydis pathogenesis, we tested the ability of the well-characterized herbicide BroadStar to influence disease. This herbicide contains the active ingredient flumioxazin, an inhibitor of Hem14 in the heme biosynthesis pathway, and we found that it was an effective antifungal agent for blocking disease in maize. Thus, repurposing herbicides for which resistant plants are available may be an effective strategy to control pathogens and achieve crop protection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为杀菌剂的除草剂:以玉米病原体 Ustilago maydis 的血红素生物合成为目标。
病原体必须有效地从宿主组织中获取养分才能增殖,因此阻断病原体获取养分的策略有望控制病害。在本研究中,我们研究了血红素生物合成是否是削弱植物病原真菌 Ustilago maydis 对玉米植株毒力的有效靶标。我们首先将编码尿卟啉原脱羧酶(Urod)的血红素生物合成基因 hem12置于氮源或碳源调控启动子的控制下,构建了该真菌的条件性血红素辅助营养体。这些菌株在非许可条件下是血红素辅助营养体,无法导致玉米幼苗发病,从而证明真菌无法从宿主组织中获得足够的血红素来支持增殖。随后的实验确定了内吞作用在血红素吸收中的作用、真菌对血红素毒性的敏感性以及对外源血红素的转录反应。后一项 RNA-seq 实验确定了一个候选 ABC 转运体,该转运体在对血红素和异种生物的反应中发挥作用。鉴于血红素的生物合成对麦地那龙线虫(U. maydis)发病机制的重要性,我们测试了特征明显的除草剂 BroadStar 对疾病的影响能力。这种除草剂含有活性成分氟草胺,它是血红素生物合成途径中 Hem14 的抑制剂,我们发现它是一种有效的抗真菌剂,可以阻止玉米病害的发生。因此,重新利用已有抗性植物的除草剂可能是控制病原体和实现作物保护的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular plant pathology
Molecular plant pathology 生物-植物科学
CiteScore
9.40
自引率
4.10%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.
期刊最新文献
Herbicides as fungicides: Targeting heme biosynthesis in the maize pathogen Ustilago maydis. The Phytophthora infestans effector Pi05910 suppresses and destabilizes host glycolate oxidase StGOX4 to promote plant susceptibility. A novel protein elicitor (Cs08297) from Ciboria shiraiana enhances plant disease resistance. Flg22-facilitated PGPR colonization in root tips and control of root rot. A single phosphorylatable amino acid residue is essential for the recognition of multiple potyviral HCPro effectors by potato Nytbr.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1