Preparation and Evaluation of Poloxamer/Carbopol In-Situ Gel Loaded with Quercetin: In-Vitro Drug Release and Cell Viability Study.

IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Tissue engineering and regenerative medicine Pub Date : 2024-12-01 Epub Date: 2024-11-03 DOI:10.1007/s13770-024-00671-z
Pinxuan Zheng, Xueying Liu, Yanqing Jiao, Xuran Mao, Zhaorong Zong, Qi Jia, Heng Bo Jiang, Eui-Seok Lee, Qi Chen
{"title":"Preparation and Evaluation of Poloxamer/Carbopol In-Situ Gel Loaded with Quercetin: In-Vitro Drug Release and Cell Viability Study.","authors":"Pinxuan Zheng, Xueying Liu, Yanqing Jiao, Xuran Mao, Zhaorong Zong, Qi Jia, Heng Bo Jiang, Eui-Seok Lee, Qi Chen","doi":"10.1007/s13770-024-00671-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Periodontitis is a severe chronic inflammatory disease, whose traditional systemic antimicrobial therapy faces great limitations. In-situ gels provide an effective solution as an emerging local drug delivery system.</p><p><strong>Methods: </strong>In this study, the novel thermosensitive poloxamer/carbopol in-situ gels loaded with 20 μmol/L quercetin for the treatment of periodontitis were prepared by cold method. Thirteen batches of in-situ gels based on two independent factors (X<sub>1</sub>: poloxamer 407 and X<sub>2</sub>: carbopol 934P) were designed and optimized by the statistical method of central composite design (CCD). The transparency, pH, injectability, viscosity, gelation temperature, gelation time, elasticity modulus, degradation rate and in-vitro drug release studies of the batches were evaluated, and the percentage of drug release in the first hour, the time required for 90% drug release, gelation temperature, and gelation time were selected as dependent variables.</p><p><strong>Results: </strong>These two independent factors significantly affected the four dependent variables (p < 0.05). The optimization result displayed that the optimized concentration of poloxamer 407 was 20.84% (w/v), and carbopol 934P was 0.5% (w/v). The optimized formulation showed a clear appearance (++), acceptable injectability (Pass), viscosity(151,798 mPa s), gelation temperature (36 °C), gelation time (213 s), preferable cell viability and cell proliferation, conformed to first-order release kinetics, and had a significant antibacterial effect.</p><p><strong>Conclusions: </strong>The article demonstrates the great potential of the quercetin in-situ gel as an effective treatment for periodontitis.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"1153-1171"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-024-00671-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Periodontitis is a severe chronic inflammatory disease, whose traditional systemic antimicrobial therapy faces great limitations. In-situ gels provide an effective solution as an emerging local drug delivery system.

Methods: In this study, the novel thermosensitive poloxamer/carbopol in-situ gels loaded with 20 μmol/L quercetin for the treatment of periodontitis were prepared by cold method. Thirteen batches of in-situ gels based on two independent factors (X1: poloxamer 407 and X2: carbopol 934P) were designed and optimized by the statistical method of central composite design (CCD). The transparency, pH, injectability, viscosity, gelation temperature, gelation time, elasticity modulus, degradation rate and in-vitro drug release studies of the batches were evaluated, and the percentage of drug release in the first hour, the time required for 90% drug release, gelation temperature, and gelation time were selected as dependent variables.

Results: These two independent factors significantly affected the four dependent variables (p < 0.05). The optimization result displayed that the optimized concentration of poloxamer 407 was 20.84% (w/v), and carbopol 934P was 0.5% (w/v). The optimized formulation showed a clear appearance (++), acceptable injectability (Pass), viscosity(151,798 mPa s), gelation temperature (36 °C), gelation time (213 s), preferable cell viability and cell proliferation, conformed to first-order release kinetics, and had a significant antibacterial effect.

Conclusions: The article demonstrates the great potential of the quercetin in-situ gel as an effective treatment for periodontitis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含有槲皮素的Poloxamer/Carbopol原位凝胶的制备与评估:体外药物释放和细胞活力研究
背景:牙周炎是一种严重的慢性炎症性疾病:牙周炎是一种严重的慢性炎症性疾病,其传统的全身抗菌治疗面临很大的局限性。原位凝胶作为一种新兴的局部给药系统提供了有效的解决方案:本研究采用冷冻法制备了负载 20 μmol/L 槲皮素的新型热敏性聚氧乙烯/卡波姆原位凝胶,用于治疗牙周炎。基于两个独立因子(X1:poloxamer 407和X2:carbopol 934P)设计了13批原位凝胶,并采用中心复合设计(CCD)统计方法进行了优化。对各批次产品的透明度、pH值、可注射性、粘度、凝胶化温度、凝胶化时间、弹性模量、降解率和体外药物释放研究进行了评价,并选取第一小时药物释放百分比、药物释放90%所需时间、凝胶化温度和凝胶化时间作为因变量:结果:这两个自变量对四个因变量有明显影响(p 结论:这两个自变量对四个因变量有明显影响:文章证明了槲皮素原位凝胶作为一种有效治疗牙周炎的药物的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue engineering and regenerative medicine
Tissue engineering and regenerative medicine CELL & TISSUE ENGINEERING-ENGINEERING, BIOMEDICAL
CiteScore
6.80
自引率
5.60%
发文量
83
审稿时长
6-12 weeks
期刊介绍: Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.
期刊最新文献
Determining Which Hydrostatic Pressure Regimes Promote Osteogenesis in Human Mesenchymal Stem Cells. Collagen-Heparin-FGF2-VEGF Scaffolds Induce a Regenerative Gene Expression Profile in a Fetal Sheep Wound Model. Macrophage Polarization: A Novel Target and Strategy for Pathological Scarring. Perfusion Bioreactor Conditioning of Small-diameter Plant-based Vascular Grafts. Exosomes-Shuttled lncRNA SNHG7 by Bone Marrow Mesenchymal Stem Cells Alleviates Osteoarthritis Through Targeting miR-485-5p/FSP1 Axis-Mediated Chondrocytes Ferroptosis and Inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1