首页 > 最新文献

Tissue engineering and regenerative medicine最新文献

英文 中文
Antioxidant Peptide-Based Nanocarriers for Delivering Wound Healing Agents.
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-10 DOI: 10.1007/s13770-025-00701-4
Inseo Lee, Woo Hyun Kwon, Joo-Young Kim, Ha Kyeong Kim, Ji-Eun Kim, Yong-Beom Lim, Woo-Jin Jeong, Jun Shik Choi

Background: Curcumin, a well-known wound healing agent, faces clinical limitations due to its poor water solubility, rapid degradation, and short plasma half-life. To address these challenges, we developed a self-assembling peptide incorporating an antioxidant sequence (YGDEY), which is capable of not only delivering curcumin but also exhibiting additional bioactivity to enhance wound healing.

Methods: An antioxidant nanocarrier was developed via peptide self-assembly. To design an amphiphilic peptide for the nanocarrier assembly, antioxidant peptide sequence (YGDEY) as the hydrophilic segment and the hydrophobic block (WLWL) were incorporated to single peptide molecule. The peptide's self-assembly behavior and curcumin encapsulation were initially analyzed. Subsequent evaluations included cytocompatibility, cellular uptake, and antioxidant activity.

Results: Driven by strong interactions among their hydrophobic blocks (WLWL), the peptides formed well-defined nanostructures exhibiting high thermal stability. Furthermore, the encapsulation of curcumin within the micelle significantly improved its cellular penetration efficiency. When applied to fibroblast cells, the peptide-curcumin nanocomplexes exhibited synergistically enhanced antioxidant activity, which notably outperformed free curcumin and free peptide in scavenging reactive oxygen species.

Conclusion: These findings highlight the potential of the designed peptide-based nanocarrier to overcome intrinsic limitations of curcumin and enhance its therapeutic efficacy, providing a promising strategy for advanced wound healing applications.

{"title":"Antioxidant Peptide-Based Nanocarriers for Delivering Wound Healing Agents.","authors":"Inseo Lee, Woo Hyun Kwon, Joo-Young Kim, Ha Kyeong Kim, Ji-Eun Kim, Yong-Beom Lim, Woo-Jin Jeong, Jun Shik Choi","doi":"10.1007/s13770-025-00701-4","DOIUrl":"https://doi.org/10.1007/s13770-025-00701-4","url":null,"abstract":"<p><strong>Background: </strong>Curcumin, a well-known wound healing agent, faces clinical limitations due to its poor water solubility, rapid degradation, and short plasma half-life. To address these challenges, we developed a self-assembling peptide incorporating an antioxidant sequence (YGDEY), which is capable of not only delivering curcumin but also exhibiting additional bioactivity to enhance wound healing.</p><p><strong>Methods: </strong>An antioxidant nanocarrier was developed via peptide self-assembly. To design an amphiphilic peptide for the nanocarrier assembly, antioxidant peptide sequence (YGDEY) as the hydrophilic segment and the hydrophobic block (WLWL) were incorporated to single peptide molecule. The peptide's self-assembly behavior and curcumin encapsulation were initially analyzed. Subsequent evaluations included cytocompatibility, cellular uptake, and antioxidant activity.</p><p><strong>Results: </strong>Driven by strong interactions among their hydrophobic blocks (WLWL), the peptides formed well-defined nanostructures exhibiting high thermal stability. Furthermore, the encapsulation of curcumin within the micelle significantly improved its cellular penetration efficiency. When applied to fibroblast cells, the peptide-curcumin nanocomplexes exhibited synergistically enhanced antioxidant activity, which notably outperformed free curcumin and free peptide in scavenging reactive oxygen species.</p><p><strong>Conclusion: </strong>These findings highlight the potential of the designed peptide-based nanocarrier to overcome intrinsic limitations of curcumin and enhance its therapeutic efficacy, providing a promising strategy for advanced wound healing applications.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovations in Vascular Repair from Mechanical Intervention to Regenerative Therapies.
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-08 DOI: 10.1007/s13770-024-00700-x
Hye-Min Park, Chae-Lin Kim, Dasom Kong, Seon-Hee Heo, Hyun-Ji Park

Background: Vascular diseases, including atherosclerosis and thrombosis, are leading causes of morbidity and mortality worldwide, often resulting in vessel stenosis that impairs blood flow and leads to severe clinical outcomes. Traditional mechanical interventions, such as balloon angioplasty and bare-metal stents, provided initial solutions but were limited by restenosis and thrombosis. The advent of drug-eluting stents improved short-term outcomes by inhibiting vascular smooth muscle cell proliferation, however, they faced challenges including delayed reendothelialization and late-stage thrombosis.

Methods: This review highlights the progression from mechanical to biological interventions in treating vascular stenosis and underscores the need for integrated approaches that combine mechanical precision with regenerative therapies.

Results: To address long-term complications, bioresorbable stents were developed to provide temporary scaffolding that gradually dissolves, yet they still encounter challenges with mechanical integrity and optimal degradation rates. Consequently, emerging therapies now focus on biological approaches, such as gene therapy, extracellular vesicle treatments, and cell therapies, that aim to promote vascular repair at the cellular level. These strategies offer the potential for true vascular regeneration by enhancing endothelialization, modulating immune responses, and stimulating angiogenesis.

Conclusion: Integrating mechanical precision with regenerative biological therapies offers a promising future for treating vascular stenosis. A comprehensive approach combining these modalities could achieve sustainable vascular health.

{"title":"Innovations in Vascular Repair from Mechanical Intervention to Regenerative Therapies.","authors":"Hye-Min Park, Chae-Lin Kim, Dasom Kong, Seon-Hee Heo, Hyun-Ji Park","doi":"10.1007/s13770-024-00700-x","DOIUrl":"https://doi.org/10.1007/s13770-024-00700-x","url":null,"abstract":"<p><strong>Background: </strong>Vascular diseases, including atherosclerosis and thrombosis, are leading causes of morbidity and mortality worldwide, often resulting in vessel stenosis that impairs blood flow and leads to severe clinical outcomes. Traditional mechanical interventions, such as balloon angioplasty and bare-metal stents, provided initial solutions but were limited by restenosis and thrombosis. The advent of drug-eluting stents improved short-term outcomes by inhibiting vascular smooth muscle cell proliferation, however, they faced challenges including delayed reendothelialization and late-stage thrombosis.</p><p><strong>Methods: </strong>This review highlights the progression from mechanical to biological interventions in treating vascular stenosis and underscores the need for integrated approaches that combine mechanical precision with regenerative therapies.</p><p><strong>Results: </strong>To address long-term complications, bioresorbable stents were developed to provide temporary scaffolding that gradually dissolves, yet they still encounter challenges with mechanical integrity and optimal degradation rates. Consequently, emerging therapies now focus on biological approaches, such as gene therapy, extracellular vesicle treatments, and cell therapies, that aim to promote vascular repair at the cellular level. These strategies offer the potential for true vascular regeneration by enhancing endothelialization, modulating immune responses, and stimulating angiogenesis.</p><p><strong>Conclusion: </strong>Integrating mechanical precision with regenerative biological therapies offers a promising future for treating vascular stenosis. A comprehensive approach combining these modalities could achieve sustainable vascular health.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues. 人诱导多能干细胞衍生心脏组织收缩同步的快速视频分析。
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-01 Epub Date: 2025-01-13 DOI: 10.1007/s13770-024-00688-4
Yuqing Jiang, Mingcheng Xue, Lu Ou, Huiquan Wu, Jianhui Yang, Wangzihan Zhang, Zhuomin Zhou, Qiang Gao, Bin Lin, Weiwei Kong, Songyue Chen, Daoheng Sun

Background: The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.

Methods: We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.

Results: Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the Lucas-Kanade (LK) optical flow method, and provided better stability and accuracy in the results.

Conclusion: This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.

背景:心肌细胞(CMs)的收缩行为,尤其是收缩同步性,是反映其成熟度和对药物反应的关键因素。更宽的视场有助于观察更明显的同步差异,但随之而来的是更大的计算负载,需要更多的计算能力或更长的计算时间。方法:基于物理学和光度学原理,提出一种将光场亮度变化与心脏组织收缩状态直接关联的方法(CVB法),用于大视场快速视频分析,获取周期、收缩传播方向和速度等收缩参数。结果:通过在排列和随机纳米纤维支架上培养的绿色荧光蛋白(GFP)标记的人诱导多能干细胞(hiPSC)来源的CMs的视频分析,证明了CVB方法可以获得大视场范围内感兴趣区域(roi)内的收缩参数并量化收缩方向和速度。与其中一种轮廓跟踪方法Lucas-Kanade (LK)光流法相比,CVB方法所需的计算时间更少,并且结果的稳定性和准确性更好。结论:该方法计算量小,受运动模糊和失焦情况的影响较小,为在大视场下准确、快速分析心脏组织收缩同步提供了一种潜在的工具,无需更强大的硬件。
{"title":"Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues.","authors":"Yuqing Jiang, Mingcheng Xue, Lu Ou, Huiquan Wu, Jianhui Yang, Wangzihan Zhang, Zhuomin Zhou, Qiang Gao, Bin Lin, Weiwei Kong, Songyue Chen, Daoheng Sun","doi":"10.1007/s13770-024-00688-4","DOIUrl":"10.1007/s13770-024-00688-4","url":null,"abstract":"<p><strong>Background: </strong>The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.</p><p><strong>Methods: </strong>We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.</p><p><strong>Results: </strong>Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the Lucas-Kanade (LK) optical flow method, and provided better stability and accuracy in the results.</p><p><strong>Conclusion: </strong>This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"211-224"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bone Marrow Aspiration Concentrate in the Treatment of Osteoarthritis: A Review of its Current Clinical Application. 骨髓抽吸浓缩液治疗骨关节炎的临床应用综述。
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-01 Epub Date: 2025-01-22 DOI: 10.1007/s13770-024-00693-7
Gun-Il Im

Background: Bone marrow aspiration concentrate (BMAC) has gained acceptance as a safe orthobiologic for treating osteoarthritis (OA), despite lacking robust supporting evidence. Although several publications have documented the use of BMAC in OA, evidence confirming its unequivocal efficacy remains limited.

Methods: This review aims to summarize the current clinical evidence regarding BMAC as a therapeutic for OA, while also presenting the author's perspective. Sixteen studies were reviewed, including ten randomized clinical trials (RCTs) and six cohort studies.

Results: From the review of existing literature, BMAC injections do not appear to significantly improve pain and function compared to conventional therapies such as hyaluronic acid and corticosteroids, although some studies report a longer duration of effectiveness. Furthermore, the evidence for structural improvement, which was the original rationale for cell therapy, is seldom reported.

Conclusion: In light of these findings, it is suggested that high-quality data from a large patient cohort is needed to determine the role of BMAC injections in OA treatment and address reimbursement issues. From the author's perspective, the introduction of a national registry system that provides valuable information on the cost-effectiveness of various orthopedic procedures may offer a solution.

背景:骨髓抽吸浓缩液(BMAC)作为治疗骨关节炎(OA)的一种安全的骨科药物已被接受,尽管缺乏强有力的支持证据。尽管一些出版物记录了BMAC在OA中的应用,但证实其明确疗效的证据仍然有限。方法:本综述旨在总结目前BMAC治疗骨性关节炎的临床证据,同时提出作者的观点。我们回顾了16项研究,包括10项随机临床试验(rct)和6项队列研究。结果:从现有文献的回顾来看,与透明质酸和皮质类固醇等常规疗法相比,BMAC注射似乎没有显著改善疼痛和功能,尽管一些研究报告了更长的有效时间。此外,结构改善的证据,这是细胞治疗的原始原理,很少被报道。结论:鉴于这些发现,建议需要来自大患者队列的高质量数据来确定BMAC注射在OA治疗中的作用并解决报销问题。从作者的角度来看,引入一个国家注册系统,提供各种骨科手术成本效益的宝贵信息,可能提供一个解决方案。
{"title":"Bone Marrow Aspiration Concentrate in the Treatment of Osteoarthritis: A Review of its Current Clinical Application.","authors":"Gun-Il Im","doi":"10.1007/s13770-024-00693-7","DOIUrl":"10.1007/s13770-024-00693-7","url":null,"abstract":"<p><strong>Background: </strong>Bone marrow aspiration concentrate (BMAC) has gained acceptance as a safe orthobiologic for treating osteoarthritis (OA), despite lacking robust supporting evidence. Although several publications have documented the use of BMAC in OA, evidence confirming its unequivocal efficacy remains limited.</p><p><strong>Methods: </strong>This review aims to summarize the current clinical evidence regarding BMAC as a therapeutic for OA, while also presenting the author's perspective. Sixteen studies were reviewed, including ten randomized clinical trials (RCTs) and six cohort studies.</p><p><strong>Results: </strong>From the review of existing literature, BMAC injections do not appear to significantly improve pain and function compared to conventional therapies such as hyaluronic acid and corticosteroids, although some studies report a longer duration of effectiveness. Furthermore, the evidence for structural improvement, which was the original rationale for cell therapy, is seldom reported.</p><p><strong>Conclusion: </strong>In light of these findings, it is suggested that high-quality data from a large patient cohort is needed to determine the role of BMAC injections in OA treatment and address reimbursement issues. From the author's perspective, the introduction of a national registry system that provides valuable information on the cost-effectiveness of various orthopedic procedures may offer a solution.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"159-166"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
9-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo. ∆9-四氢大麻酚增加体内培养脂肪干细胞和脂肪组织的生长因子释放。
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-01 Epub Date: 2025-01-18 DOI: 10.1007/s13770-024-00692-8
Tim Ruhl, Sofija Benic, Melissa Plum, Bong-Sung Kim, Justus P Beier, Benedikt Schaefer

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆9-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

Methods: Human ASCs were exposed to increasing concentrations of THC. Resazurin conversion was applied to investigate the effect on metabolic activity, cell number was assessed by crystal violet staining, tri-linear differentiation was evaluated by specific colorimetric approaches, and the release of growth factors was analyzed by ELISA. Two groups of mice were treated daily either with a low dose of THC (3 mg/kg) or a vehicle solution. After 3 weeks, adipose tissue was obtained from excised fat deposits, homogenized and tested for growth factor contents.

Results: THC decreased ASC proliferation but increased metabolic activity as well as adipogenic and chondrogenic differentiation. A low concentration of THC (1 µM) enhanced the growth factor release by ASCs. The concentration of these cytokines was also increased in adipose tissue of mice treated with THC.

Conlusion: Our results indicate that chronic activation of the endocannabinoid system promoted differentiation and growth factor release of ASCs, which could be of specific value for enhancing the regenerative potential of adipose tissue.

背景:脂肪组织移植由于其生物相容性和柔软、动态的特性,被认为是一种理想的软组织修复技术。脂肪干细胞(ASCs)对脂肪组织的再生潜力有重要贡献,因为它们可以分化成脂肪细胞并释放生长因子用于组织修复和新生血管,促进组织存活。本研究在体外和体内测试了长期低剂量的∆9-四氢大麻酚(THC)对这些再生特性的影响。方法:人类ASCs暴露于浓度增加的四氢大麻酚中。采用瑞唑啉转化法研究其对代谢活性的影响,结晶紫染色法检测细胞数量,特异比色法检测三线性分化,ELISA法检测生长因子释放。两组小鼠分别每日给予低剂量四氢大麻酚(3mg /kg)或载药溶液。3周后,从切除的脂肪沉积物中获得脂肪组织,均质并检测生长因子含量。结果:四氢大麻酚降低ASC增殖,但增加代谢活性以及成脂和成软骨分化。低浓度THC(1µM)促进ASCs的生长因子释放。四氢大麻酚处理小鼠脂肪组织中这些细胞因子的浓度也增加。结论:慢性激活内源性大麻素系统可促进ASCs的分化和生长因子的释放,对提高脂肪组织的再生潜能具有特殊价值。
{"title":"∆<sup>9</sup>-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.","authors":"Tim Ruhl, Sofija Benic, Melissa Plum, Bong-Sung Kim, Justus P Beier, Benedikt Schaefer","doi":"10.1007/s13770-024-00692-8","DOIUrl":"10.1007/s13770-024-00692-8","url":null,"abstract":"<p><strong>Background: </strong>Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆<sup>9</sup>-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.</p><p><strong>Methods: </strong>Human ASCs were exposed to increasing concentrations of THC. Resazurin conversion was applied to investigate the effect on metabolic activity, cell number was assessed by crystal violet staining, tri-linear differentiation was evaluated by specific colorimetric approaches, and the release of growth factors was analyzed by ELISA. Two groups of mice were treated daily either with a low dose of THC (3 mg/kg) or a vehicle solution. After 3 weeks, adipose tissue was obtained from excised fat deposits, homogenized and tested for growth factor contents.</p><p><strong>Results: </strong>THC decreased ASC proliferation but increased metabolic activity as well as adipogenic and chondrogenic differentiation. A low concentration of THC (1 µM) enhanced the growth factor release by ASCs. The concentration of these cytokines was also increased in adipose tissue of mice treated with THC.</p><p><strong>Conlusion: </strong>Our results indicate that chronic activation of the endocannabinoid system promoted differentiation and growth factor release of ASCs, which could be of specific value for enhancing the regenerative potential of adipose tissue.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"225-235"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794773/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regenerative Functions of Regulatory T Cells and Current Strategies Utilizing Mesenchymal Stem Cells in Immunomodulatory Tissue Regeneration. 调节性T细胞的再生功能和利用间充质干细胞进行免疫调节组织再生的当前策略。
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-01 Epub Date: 2025-01-13 DOI: 10.1007/s13770-024-00690-w
Jinsung Ahn, Bowon Kim, Alvin Bacero Bello, James J Moon, Yoshie Arai, Soo-Hong Lee

Background: Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function. MSCs enhance Treg activity through indirect interactions, such as cytokine secretion, and direct interactions via membrane proteins.

Methods: This review examines the regenerative functions of Tregs across various tissues, including bone, cartilage, muscle, and skin, and explores strategies to enhance Treg functionality using MSCs. Advanced techniques, such as the overexpression of relevant genes in MSCs, are highlighted for their potential to further enhance Treg function. Additionally, emerging technologies utilizing extracellular vesicles (EVs) and cell membrane-derived vesicles derived from MSCs offer promising alternatives to circumvent the potential side effects associated with live cell therapies. This review proposes approaches to enhance Treg function and promote tissue regeneration and also outlines future research directions.

Results and conclusion: This review elucidates recent technological advancements aimed at enhancing Treg function using MSCs and examines their potential to improve tissue regeneration efficiency.

背景:调节性T细胞(Regulatory T cells, Tregs)是维持免疫稳态和通过培养有利于组织修复的环境促进组织再生所必需的。然而,在受损组织中,过度的炎症反应会压倒treg的免疫调节能力,损害其功能并可能阻碍有效的再生。间充质干细胞(MSCs)在增强Treg功能中起关键作用。MSCs通过细胞因子分泌等间接相互作用和膜蛋白等直接相互作用增强Treg活性。方法:本文综述了Treg在不同组织中的再生功能,包括骨、软骨、肌肉和皮肤,并探讨了利用MSCs增强Treg功能的策略。先进的技术,如MSCs中相关基因的过表达,因其进一步增强Treg功能的潜力而受到重视。此外,利用来自间充质干细胞的细胞外囊泡(EVs)和细胞膜衍生囊泡的新兴技术为规避与活细胞治疗相关的潜在副作用提供了有希望的替代方案。本文综述了增强Treg功能和促进组织再生的途径,并对今后的研究方向进行了展望。结果与结论:本文综述了利用间充质干细胞增强Treg功能的最新技术进展,并探讨了其提高组织再生效率的潜力。
{"title":"Regenerative Functions of Regulatory T Cells and Current Strategies Utilizing Mesenchymal Stem Cells in Immunomodulatory Tissue Regeneration.","authors":"Jinsung Ahn, Bowon Kim, Alvin Bacero Bello, James J Moon, Yoshie Arai, Soo-Hong Lee","doi":"10.1007/s13770-024-00690-w","DOIUrl":"10.1007/s13770-024-00690-w","url":null,"abstract":"<p><strong>Background: </strong>Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function. MSCs enhance Treg activity through indirect interactions, such as cytokine secretion, and direct interactions via membrane proteins.</p><p><strong>Methods: </strong>This review examines the regenerative functions of Tregs across various tissues, including bone, cartilage, muscle, and skin, and explores strategies to enhance Treg functionality using MSCs. Advanced techniques, such as the overexpression of relevant genes in MSCs, are highlighted for their potential to further enhance Treg function. Additionally, emerging technologies utilizing extracellular vesicles (EVs) and cell membrane-derived vesicles derived from MSCs offer promising alternatives to circumvent the potential side effects associated with live cell therapies. This review proposes approaches to enhance Treg function and promote tissue regeneration and also outlines future research directions.</p><p><strong>Results and conclusion: </strong>This review elucidates recent technological advancements aimed at enhancing Treg function using MSCs and examines their potential to improve tissue regeneration efficiency.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"167-180"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794763/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduction of Low-Density Lipoprotein Cholesterol by Mesenchymal Stem Cells in a Mouse Model of Exogenous Cushing's Syndrome.
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-01 Epub Date: 2025-01-28 DOI: 10.1007/s13770-024-00697-3
Yu-Hee Kim, Seonghee Jeong, Kyung-Ah Cho, So-Youn Woo, Seung-Ho Han, Kyung-Ha Ryu

Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.

Methods: Exogenous Cushing's syndrome model mice was generated by corticosterone administration in the drinking water for 5 weeks, and T-MSCs were injected intraperitoneally twice during the third week. Serum lipid profiles were measured using a chemistry analyzer. HepG2 cells were treated with dexamethasone and co-cultured with T-MSCs. Expression levels of genes involved in cholesterol metabolism were examined using real-time PCR. Low-density lipoprotein receptor (LDLR) protein levels were determined using western blotting and immunohistochemistry. Liver RNA extracted from the CORT and CORT + MSC mouse groups was used for transcriptome sequencing analysis and protein-protein interaction analysis.

Results: Weight reduction and improvements in dyslipidemia by T-MSC administration were observed only in female mice. T-MSCs reduce circulating LDL cholesterol levels by downregulating liver X receptor α (LXRα) and inducible degrader of LDLR (IDOL) expression, thereby stabilizing LDLRs in the liver. Transcriptome analysis of liver tissue revealed pathways that are regulated by T-MSCs administration.

Conclusion: Administration of MSCs to female mice receiving chronic corticosterone treatment reduced the circulating LDL cholesterol level by downregulating the LXRα-IDOL axis in hepatocytes. These results suggest that T-MSCs may offer a novel therapeutic strategy for managing exogenous Cushing's syndrome by regulating cholesterol metabolism.

{"title":"Reduction of Low-Density Lipoprotein Cholesterol by Mesenchymal Stem Cells in a Mouse Model of Exogenous Cushing's Syndrome.","authors":"Yu-Hee Kim, Seonghee Jeong, Kyung-Ah Cho, So-Youn Woo, Seung-Ho Han, Kyung-Ha Ryu","doi":"10.1007/s13770-024-00697-3","DOIUrl":"10.1007/s13770-024-00697-3","url":null,"abstract":"<p><strong>Background: </strong>Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.</p><p><strong>Methods: </strong>Exogenous Cushing's syndrome model mice was generated by corticosterone administration in the drinking water for 5 weeks, and T-MSCs were injected intraperitoneally twice during the third week. Serum lipid profiles were measured using a chemistry analyzer. HepG2 cells were treated with dexamethasone and co-cultured with T-MSCs. Expression levels of genes involved in cholesterol metabolism were examined using real-time PCR. Low-density lipoprotein receptor (LDLR) protein levels were determined using western blotting and immunohistochemistry. Liver RNA extracted from the CORT and CORT + MSC mouse groups was used for transcriptome sequencing analysis and protein-protein interaction analysis.</p><p><strong>Results: </strong>Weight reduction and improvements in dyslipidemia by T-MSC administration were observed only in female mice. T-MSCs reduce circulating LDL cholesterol levels by downregulating liver X receptor α (LXRα) and inducible degrader of LDLR (IDOL) expression, thereby stabilizing LDLRs in the liver. Transcriptome analysis of liver tissue revealed pathways that are regulated by T-MSCs administration.</p><p><strong>Conclusion: </strong>Administration of MSCs to female mice receiving chronic corticosterone treatment reduced the circulating LDL cholesterol level by downregulating the LXRα-IDOL axis in hepatocytes. These results suggest that T-MSCs may offer a novel therapeutic strategy for managing exogenous Cushing's syndrome by regulating cholesterol metabolism.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"237-248"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biofabricated 3D Intestinal Models as an Alternative to Animal-Based Approaches for Drug Toxicity Assays. 生物制造的3D肠道模型作为药物毒性分析的动物基础方法的替代方法。
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-01 Epub Date: 2025-01-17 DOI: 10.1007/s13770-024-00694-6
Larissa Bueno Tofani, Thayná Mendonça Avelino, Rafael Júnior de Azevedo, Giovanna Blazutti Elias, Melissa Dibbernn Ganzerla, Maiara Ferreira Terra, Vanessa Kiraly Thomaz Rodrigues, Renata Santos Rabelo, Samarah Vargas Harb, Ana Carolina Migliorini Figueira

Background: The main challenge in new drug development is accurately predicting the human response in preclinical models.

Methods: In this study, we developed three different intestinal barrier models using advanced biofabrication techniques: (i) a manual model containing Caco-2 and HT-29 cells on a collagen bed, (ii) a manual model with a Caco-2/HT-29 layer on a HDFn-laden collagen layer, and (iii) a 3D bioprinted model incorporating both cellular layers. Each model was rigorously tested for its ability to simulate a functional intestinal membrane.

Results: All models successfully replicated the structural and functional aspects of the intestinal barrier. The 3D bioprinted intestinal model, however, demonstrated superior epithelial barrier integrity enhanced tight junction formation, microvilli development, and increased mucus production. When subjected to Ibuprofen, the 3D bioprinted model provided a more predictive response, underscoring its potential as a reliable in vitro tool for drug toxicity testing.

Conclusion: Our 3D bioprinted intestinal model presents a robust and predictive platform for drug toxicity assessments, significantly reducing the need for animal testing. This model not only aligns with ethical testing protocols but also offers enhanced accuracy in predicting human responses, thereby advancing the field of drug development.

背景:新药开发的主要挑战是在临床前模型中准确预测人体反应。方法:在本研究中,我们使用先进的生物制造技术开发了三种不同的肠道屏障模型:(i)在胶原蛋白床上含有Caco-2和HT-29细胞的手工模型,(ii)在高密度蛋白胶原蛋白层上含有Caco-2/HT-29层的手工模型,以及(iii)结合这两层细胞的3D生物打印模型。每个模型都经过严格的测试,以确定其模拟功能性肠膜的能力。结果:所有模型都成功地复制了肠屏障的结构和功能方面。然而,3D生物打印肠道模型显示出优越的上皮屏障完整性,增强了紧密连接的形成,微绒毛的发育和粘液的产生。当使用布洛芬时,3D生物打印模型提供了更具预测性的反应,强调了其作为药物毒性测试可靠的体外工具的潜力。结论:我们的3D生物打印肠道模型为药物毒性评估提供了一个强大的预测平台,大大减少了动物试验的需要。该模型不仅符合伦理测试协议,而且在预测人类反应方面提供了更高的准确性,从而推进了药物开发领域。
{"title":"Biofabricated 3D Intestinal Models as an Alternative to Animal-Based Approaches for Drug Toxicity Assays.","authors":"Larissa Bueno Tofani, Thayná Mendonça Avelino, Rafael Júnior de Azevedo, Giovanna Blazutti Elias, Melissa Dibbernn Ganzerla, Maiara Ferreira Terra, Vanessa Kiraly Thomaz Rodrigues, Renata Santos Rabelo, Samarah Vargas Harb, Ana Carolina Migliorini Figueira","doi":"10.1007/s13770-024-00694-6","DOIUrl":"10.1007/s13770-024-00694-6","url":null,"abstract":"<p><strong>Background: </strong>The main challenge in new drug development is accurately predicting the human response in preclinical models.</p><p><strong>Methods: </strong>In this study, we developed three different intestinal barrier models using advanced biofabrication techniques: (i) a manual model containing Caco-2 and HT-29 cells on a collagen bed, (ii) a manual model with a Caco-2/HT-29 layer on a HDFn-laden collagen layer, and (iii) a 3D bioprinted model incorporating both cellular layers. Each model was rigorously tested for its ability to simulate a functional intestinal membrane.</p><p><strong>Results: </strong>All models successfully replicated the structural and functional aspects of the intestinal barrier. The 3D bioprinted intestinal model, however, demonstrated superior epithelial barrier integrity enhanced tight junction formation, microvilli development, and increased mucus production. When subjected to Ibuprofen, the 3D bioprinted model provided a more predictive response, underscoring its potential as a reliable in vitro tool for drug toxicity testing.</p><p><strong>Conclusion: </strong>Our 3D bioprinted intestinal model presents a robust and predictive platform for drug toxicity assessments, significantly reducing the need for animal testing. This model not only aligns with ethical testing protocols but also offers enhanced accuracy in predicting human responses, thereby advancing the field of drug development.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"181-194"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Cardiomyocyte Purity through Lactate-Based Metabolic Selection. 通过乳酸代谢选择提高心肌细胞纯度。
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-01 Epub Date: 2025-01-17 DOI: 10.1007/s13770-024-00696-4
Seung Ju Seo, Yoonhee Jin

Background: Direct reprogramming of fibroblasts into chemically induced cardiomyocyte-like cells (CiCMs) through small molecules presents a promising cell source for cardiac regeneration and therapeutic development. However, the contaminating non-cardiomyocytes, primarily unconverted fibroblasts, reduce the effectiveness of CiCMs in various applications. This study investigated a metabolic selection approach using lactate to enrich CiCMs by exploiting the unique metabolic capability of cardiomyocytes to utilize lactate as an alternative energy source.

Methods: Primary mouse embryonic fibroblasts (pMEFs) were reprogrammed into CiCMs and subjected to a glucose-depleted, lactate-supplemented medium for 4 days. Afterward, cell viability was analyzed, and cardiomyocyte efficiency was assessed through the expression of cardiac-specific markers. Additionally, electrophysiological function was evaluated by examining drug-induced responses.

Results: The lactate treatment led to a significant decrease in the viability of non-cardiomyocytes (pMEF-LAC), while CiCMs (CiCM-LAC) showed minimal cell death. Specifically, the expression of all cardiac-related markers was increased in CiCM-LAC. Metabolically purified CiCMs exhibited enhanced contractile force and increased contraction frequency compared to non-purified CiCMs, as well as an elevated responsiveness to drugs.

Conclusion: This study demonstrates that lactate-based metabolic selection is an effective and practical approach for enriching CiCMs, offering a cost-effective alternative to other purification methods. The application of this strategy could potentially broaden the accessibility and utility of reprogrammed cardiomyocytes in cardiac regeneration and therapeutic development.

背景:通过小分子将成纤维细胞直接重编程为化学诱导的心肌细胞样细胞(CiCMs)是心脏再生和治疗发展的一个有前途的细胞来源。然而,污染的非心肌细胞,主要是未转化的成纤维细胞,降低了cicm在各种应用中的有效性。本研究通过利用心肌细胞独特的代谢能力,利用乳酸作为替代能量来源,研究了一种利用乳酸丰富cicm的代谢选择方法。方法:将原代小鼠胚胎成纤维细胞(pmef)重新编程为cicm,并在葡萄糖耗尽、乳酸补充的培养基中培养4天。随后,分析细胞活力,并通过心脏特异性标志物的表达评估心肌细胞效率。此外,通过检查药物诱导的反应来评估电生理功能。结果:乳酸处理导致非心肌细胞(pMEF-LAC)活力显著降低,而cicm (CiCM-LAC)细胞死亡最小。具体而言,ccm - lac中所有心脏相关标志物的表达均增加。与非纯化的cicm相比,代谢纯化的cicm表现出增强的收缩力和增加的收缩频率,以及对药物的反应性提高。结论:本研究表明,基于乳酸盐的代谢选择是一种有效且实用的富集cicm的方法,为其他纯化方法提供了一种经济有效的选择。这一策略的应用可能会扩大重编程心肌细胞在心脏再生和治疗开发中的可及性和实用性。
{"title":"Enhancing Cardiomyocyte Purity through Lactate-Based Metabolic Selection.","authors":"Seung Ju Seo, Yoonhee Jin","doi":"10.1007/s13770-024-00696-4","DOIUrl":"10.1007/s13770-024-00696-4","url":null,"abstract":"<p><strong>Background: </strong>Direct reprogramming of fibroblasts into chemically induced cardiomyocyte-like cells (CiCMs) through small molecules presents a promising cell source for cardiac regeneration and therapeutic development. However, the contaminating non-cardiomyocytes, primarily unconverted fibroblasts, reduce the effectiveness of CiCMs in various applications. This study investigated a metabolic selection approach using lactate to enrich CiCMs by exploiting the unique metabolic capability of cardiomyocytes to utilize lactate as an alternative energy source.</p><p><strong>Methods: </strong>Primary mouse embryonic fibroblasts (pMEFs) were reprogrammed into CiCMs and subjected to a glucose-depleted, lactate-supplemented medium for 4 days. Afterward, cell viability was analyzed, and cardiomyocyte efficiency was assessed through the expression of cardiac-specific markers. Additionally, electrophysiological function was evaluated by examining drug-induced responses.</p><p><strong>Results: </strong>The lactate treatment led to a significant decrease in the viability of non-cardiomyocytes (pMEF-LAC), while CiCMs (CiCM-LAC) showed minimal cell death. Specifically, the expression of all cardiac-related markers was increased in CiCM-LAC. Metabolically purified CiCMs exhibited enhanced contractile force and increased contraction frequency compared to non-purified CiCMs, as well as an elevated responsiveness to drugs.</p><p><strong>Conclusion: </strong>This study demonstrates that lactate-based metabolic selection is an effective and practical approach for enriching CiCMs, offering a cost-effective alternative to other purification methods. The application of this strategy could potentially broaden the accessibility and utility of reprogrammed cardiomyocytes in cardiac regeneration and therapeutic development.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"249-260"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment. 血管组织工程用厚层纤维定向静电纺丝装置的研制。
IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-01 Epub Date: 2025-01-18 DOI: 10.1007/s13770-024-00691-9
Shen Chen, Chao Xie, Xiaoxi Long, Xianwei Wang, Xudong Li, Peng Liu, Jiabin Liu, Zuyong Wang

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.

Results: The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.

Conclusion: This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.

背景:组织工程通过模拟血管的细胞外基质,为血管修复和再生提供了希望。然而,通过静电纺丝实现具有排列纤维结构的功能和厚血管壁仍然是一个重大挑战。方法:研制了一种利用辅助电极和弹簧的新型静电纺丝装置。研究了工艺参数对纤维尺寸和形貌的影响。通过材料表征和细胞生物相容性评估对支架的结构和功能进行评价。结果:新装置可以控制纤维在不同设计方向的沉积。制备的小直径血管支架由内层纵向取向纤维和外层周向取向纤维组成(L + C血管支架)。关键参数,包括转速,辅助电极的利用率和顶部到集电极的距离(TCD)显著影响光纤取向。此外,电压、TCD、进给速度、针径、辅助电极和集电极-辅助电极距离也会影响纤维直径和分布。通过拉伸试验和水接触角证实了L + C血管支架的力学优势和表面润湿性的改善。细胞实验表明,L + C血管支架促进细胞粘附和增殖,人脐静脉内皮细胞和平滑肌细胞分别沿内层和外层纤维方向附着和伸长。结论:本研究证明了利用改进的静电纺丝装置制造纤维排列的厚壁血管支架的可行性。这些发现为辅助电极、特定集电极如何影响纤维沉积提供了见解,有可能推进仿生血管支架工程。
{"title":"Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.","authors":"Shen Chen, Chao Xie, Xiaoxi Long, Xianwei Wang, Xudong Li, Peng Liu, Jiabin Liu, Zuyong Wang","doi":"10.1007/s13770-024-00691-9","DOIUrl":"10.1007/s13770-024-00691-9","url":null,"abstract":"<p><strong>Background: </strong>Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.</p><p><strong>Methods: </strong>A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.</p><p><strong>Results: </strong>The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.</p><p><strong>Conclusion: </strong>This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"195-210"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794904/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tissue engineering and regenerative medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1