{"title":"Phototransformation and photoreactivity of MPs-DOM in aqueous environment: Key role of MPs structure decoded by optical and molecular signatures.","authors":"Saisai Guo, Linan Liu, Lan Wang, Jingchun Tang","doi":"10.1016/j.jhazmat.2024.136331","DOIUrl":null,"url":null,"abstract":"<p><p>The dissolved organic matter (DOM) derived from microplastics (MPs-DOM) can be one of the photoactive components in DOM. However, information on the properties and photoreactivity of MPs-DOM during phototransformation is limited. Here, we investigated the properties and photoreactivity of MPs-DOM from polyolefins (MPs-DOM-POs), MPs-DOM derived from benzene-containing polymers (MPs-DOM-BCPs), and Suwannee River natural organic matter (SR-NOM), during a 168-hour phototransformation. After phototransformation, all examined types of DOM exhibit a decrease in concentration and molecular weight. Notably, MPs-DOM-POs display increased aromaticity and saturation, while MPs-DOM-BCPs and SR-NOM show reduced aromaticity and saturation. MPs-DOM-POs present higher steady-state concentrations of •OH but much lower steady-state concentrations of <sup>1</sup>O<sub>2</sub> than those of MPs-DOM-BCPs. In comparison, MPs-DOM produce more •OH but less <sup>1</sup>O<sub>2</sub> than SR-NOM. This study proposes that the diversification of aliphatic C─H bonds (arylation and carbonylation) by reactive intermediates (especially •OH) is the main pathway for MPs-DOM-POs phototransformation for the first time. On the other hand, the cleavage on the aromatic carboxylic acids by reactive intermediates (especially <sup>1</sup>O<sub>2</sub>) is the main mechanism for MPs-DOM-BCPs and SR-NOM phototransformation. Our findings provide new insights into the phototransformation and photoreactivity of MPs-DOM and help to understand the potential risks of MPs in aqueous environment.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136331"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The dissolved organic matter (DOM) derived from microplastics (MPs-DOM) can be one of the photoactive components in DOM. However, information on the properties and photoreactivity of MPs-DOM during phototransformation is limited. Here, we investigated the properties and photoreactivity of MPs-DOM from polyolefins (MPs-DOM-POs), MPs-DOM derived from benzene-containing polymers (MPs-DOM-BCPs), and Suwannee River natural organic matter (SR-NOM), during a 168-hour phototransformation. After phototransformation, all examined types of DOM exhibit a decrease in concentration and molecular weight. Notably, MPs-DOM-POs display increased aromaticity and saturation, while MPs-DOM-BCPs and SR-NOM show reduced aromaticity and saturation. MPs-DOM-POs present higher steady-state concentrations of •OH but much lower steady-state concentrations of 1O2 than those of MPs-DOM-BCPs. In comparison, MPs-DOM produce more •OH but less 1O2 than SR-NOM. This study proposes that the diversification of aliphatic C─H bonds (arylation and carbonylation) by reactive intermediates (especially •OH) is the main pathway for MPs-DOM-POs phototransformation for the first time. On the other hand, the cleavage on the aromatic carboxylic acids by reactive intermediates (especially 1O2) is the main mechanism for MPs-DOM-BCPs and SR-NOM phototransformation. Our findings provide new insights into the phototransformation and photoreactivity of MPs-DOM and help to understand the potential risks of MPs in aqueous environment.