Computational multiphysics modeling of radioactive aerosol deposition in diverse human respiratory tract geometries

Ignacio R. Bartol, Martin S. Graffigna Palomba, Mauricio E. Tano, Shaheen A. Dewji
{"title":"Computational multiphysics modeling of radioactive aerosol deposition in diverse human respiratory tract geometries","authors":"Ignacio R. Bartol, Martin S. Graffigna Palomba, Mauricio E. Tano, Shaheen A. Dewji","doi":"10.1038/s44172-024-00296-z","DOIUrl":null,"url":null,"abstract":"The evaluation of aerosol exposure relies on generic mathematical models that assume uniform particle deposition profiles over the human respiratory tract and do not account for subject-specific characteristics. Here we introduce a hybrid-automated computational workflow that generates personalized particle deposition profiles in 3D reconstructed human airways from computed tomography scans using Computational Fluid and Particle Dynamics simulations. This is the first large-scale study to consider realistic airways variability, where 380 lower and 40 upper human respiratory tract 3D geometries are reconstructed and parameterized. The data is clustered into nine groups using random forest regression. Computational fluid and particle dynamics simulations are conducted on these representative geometries using a realistic heavy-breathing respiratory cycle and radioactive iodine-131 as a source term. Monte Carlo radiation transport simulations are performed to obtain detailed energy deposition maps. Our findings emphasize the importance of personalized studies, as minor respiratory tract variations notably influence deposition patterns rather than global parameters of the lower airways, observing more than 30% variance in the mass deposition fraction. Shaheen Dewji and colleagues introduce a hybrid-automated computational framework for modelling particles in the human respiratory tract (HRT) with variable geometries. Their method produces patient specific particle deposition profiles that highlights how geometrical characteristics can vary aerosol deposition within the HRT and radiation exposure between patients.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-18"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00296-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00296-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The evaluation of aerosol exposure relies on generic mathematical models that assume uniform particle deposition profiles over the human respiratory tract and do not account for subject-specific characteristics. Here we introduce a hybrid-automated computational workflow that generates personalized particle deposition profiles in 3D reconstructed human airways from computed tomography scans using Computational Fluid and Particle Dynamics simulations. This is the first large-scale study to consider realistic airways variability, where 380 lower and 40 upper human respiratory tract 3D geometries are reconstructed and parameterized. The data is clustered into nine groups using random forest regression. Computational fluid and particle dynamics simulations are conducted on these representative geometries using a realistic heavy-breathing respiratory cycle and radioactive iodine-131 as a source term. Monte Carlo radiation transport simulations are performed to obtain detailed energy deposition maps. Our findings emphasize the importance of personalized studies, as minor respiratory tract variations notably influence deposition patterns rather than global parameters of the lower airways, observing more than 30% variance in the mass deposition fraction. Shaheen Dewji and colleagues introduce a hybrid-automated computational framework for modelling particles in the human respiratory tract (HRT) with variable geometries. Their method produces patient specific particle deposition profiles that highlights how geometrical characteristics can vary aerosol deposition within the HRT and radiation exposure between patients.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
放射性气溶胶在不同人体呼吸道几何形状中沉积的多物理场计算模型。
对气溶胶暴露的评估依赖于通用数学模型,这些模型假定粒子在人体呼吸道上的沉积剖面是均匀的,而不考虑受试者的具体特征。在这里,我们介绍了一种混合自动化计算工作流程,该流程利用计算流体和粒子动力学模拟,通过计算机断层扫描扫描生成三维重建人体气道中的个性化粒子沉积剖面。这是第一项考虑到现实气道变异性的大规模研究,对 380 个下呼吸道和 40 个上呼吸道三维几何图形进行了重建和参数化。使用随机森林回归法将数据分为九组。在这些具有代表性的几何图形上进行了计算流体和粒子动力学模拟,使用了现实的重呼吸周期和放射性碘-131 作为源项。通过蒙特卡罗辐射传输模拟,获得了详细的能量沉积图。我们的研究结果强调了个性化研究的重要性,因为呼吸道的细微变化会显著影响沉积模式,而不是下呼吸道的整体参数,观察到的质量沉积分数差异超过 30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bio-inspired multi-dimensional deep fusion learning for predicting dynamical aerospace propulsion systems Perspectives on innovative non-fertilizer applications of sewage sludge for mitigating environmental and health hazards Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion Ultra-lightweight rechargeable battery with enhanced gravimetric energy densities >750 Wh kg−1 in lithium–sulfur pouch cell An energy-resolving photon-counting X-ray detector for computed tomography combining silicon-photomultiplier arrays and scintillation crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1