Multi-level physics informed deep learning for solving partial differential equations in computational structural mechanics

Weiwei He, Jinzhao Li, Xuan Kong, Lu Deng
{"title":"Multi-level physics informed deep learning for solving partial differential equations in computational structural mechanics","authors":"Weiwei He, Jinzhao Li, Xuan Kong, Lu Deng","doi":"10.1038/s44172-024-00303-3","DOIUrl":null,"url":null,"abstract":"Physics-informed neural network has emerged as a promising approach for solving partial differential equations. However, it is still a challenge for the computation of structural mechanics problems since it involves solving higher-order partial differential equations as the governing equations are fourth-order nonlinear equations. Here we develop a multi-level physics-informed neural network framework where an aggregation model is developed by combining multiple neural networks, with each one involving only first-order or second-order partial differential equations representing different physics information such as geometrical, constitutive, and equilibrium relations of the structure. The proposed framework demonstrates a remarkable advancement over the classical neural networks in terms of the accuracy and computation time. The proposed method holds the potential to become a promising paradigm for structural mechanics computation and facilitate the intelligent computation of digital twin systems. Weiwei He and colleagues implement a multi-level physicsinformed neural network to solve partial differential equations, a key problem for efficient structure analysis. Their results improve the accuracy and computation time for solving these problems.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00303-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00303-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Physics-informed neural network has emerged as a promising approach for solving partial differential equations. However, it is still a challenge for the computation of structural mechanics problems since it involves solving higher-order partial differential equations as the governing equations are fourth-order nonlinear equations. Here we develop a multi-level physics-informed neural network framework where an aggregation model is developed by combining multiple neural networks, with each one involving only first-order or second-order partial differential equations representing different physics information such as geometrical, constitutive, and equilibrium relations of the structure. The proposed framework demonstrates a remarkable advancement over the classical neural networks in terms of the accuracy and computation time. The proposed method holds the potential to become a promising paradigm for structural mechanics computation and facilitate the intelligent computation of digital twin systems. Weiwei He and colleagues implement a multi-level physicsinformed neural network to solve partial differential equations, a key problem for efficient structure analysis. Their results improve the accuracy and computation time for solving these problems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层次物理信息深度学习,用于求解计算结构力学中的偏微分方程。
物理信息神经网络已成为解决偏微分方程的一种有前途的方法。然而,由于结构力学问题的控制方程是四阶非线性方程,因此需要求解高阶偏微分方程,这对结构力学问题的计算仍是一个挑战。在此,我们开发了一种多层次物理信息神经网络框架,该框架通过组合多个神经网络来开发聚合模型,每个神经网络只涉及一阶或二阶偏微分方程,代表不同的物理信息,如结构的几何、构成和平衡关系。与传统的神经网络相比,所提出的框架在精确度和计算时间方面都有显著进步。所提出的方法有望成为结构力学计算的范例,并促进数字孪生系统的智能计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeBCR: a sparsity-efficient framework for image enhancement through a deep-learning-based solution to inverse problems. Enhancing energy capture: single- and dual-chamber oscillating water column devices under converging waves. Microengineering of the capillary interface of midbrain dopaminergic neurons to study Parkinson's disease vascular alterations. Accelerating CEST MRI through complementary undersampling and multi-offset transformer reconstruction. Reasoning-agent-driven process simulation, optimization, carbon accounting and decarbonization of distillation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1