Data-Driven Dynamics Modeling of Miniature Robotic Blimps Using Neural ODEs With Parameter Auto-Tuning

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-10-21 DOI:10.1109/LRA.2024.3484182
Yongjian Zhu;Hao Cheng;Feitian Zhang
{"title":"Data-Driven Dynamics Modeling of Miniature Robotic Blimps Using Neural ODEs With Parameter Auto-Tuning","authors":"Yongjian Zhu;Hao Cheng;Feitian Zhang","doi":"10.1109/LRA.2024.3484182","DOIUrl":null,"url":null,"abstract":"Miniature robotic blimps, as one type of lighter-than-air aerial vehicles, have attracted increasing attention in the science and engineering community for their enhanced safety, extended endurance, and quieter operation compared to quadrotors. Accurately modeling the dynamics of these robotic blimps poses a significant challenge due to the complex aerodynamics stemming from their large lifting bodies. Traditional first-principle models have difficulty obtaining accurate aerodynamic parameters and often overlook high-order nonlinearities, thus coming to their limit in modeling the motion dynamics of miniature robotic blimps. To tackle this challenge, this letter proposes the Auto-tuning Blimp-oriented Neural Ordinary Differential Equation method (ABNODE), a data-driven approach that integrates first-principle and neural network modeling. Spiraling motion experiments of robotic blimps are conducted, comparing the ABNODE with first-principle and other data-driven benchmark models, the results of which demonstrate the effectiveness of the proposed method.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"10986-10993"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10723763/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Miniature robotic blimps, as one type of lighter-than-air aerial vehicles, have attracted increasing attention in the science and engineering community for their enhanced safety, extended endurance, and quieter operation compared to quadrotors. Accurately modeling the dynamics of these robotic blimps poses a significant challenge due to the complex aerodynamics stemming from their large lifting bodies. Traditional first-principle models have difficulty obtaining accurate aerodynamic parameters and often overlook high-order nonlinearities, thus coming to their limit in modeling the motion dynamics of miniature robotic blimps. To tackle this challenge, this letter proposes the Auto-tuning Blimp-oriented Neural Ordinary Differential Equation method (ABNODE), a data-driven approach that integrates first-principle and neural network modeling. Spiraling motion experiments of robotic blimps are conducted, comparing the ABNODE with first-principle and other data-driven benchmark models, the results of which demonstrate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用带有参数自动调整功能的神经 ODE 建立微型机器人飞艇的数据驱动动力学模型
微型机器人飞艇是轻于空气的航空飞行器的一种,与四旋翼飞行器相比,其安全性更高、续航时间更长、运行更安静,因此越来越受到科学和工程界的关注。由于大型升力体具有复杂的空气动力学特性,因此对这些机器人飞艇的动力学进行精确建模是一项重大挑战。传统的第一原理模型难以获得准确的空气动力学参数,而且往往忽略了高阶非线性因素,因此在微型机器人飞艇的运动动力学建模方面已经达到了极限。为解决这一难题,本文提出了面向飞艇的自动调整神经常微分方程法(ABNODE),这是一种数据驱动的方法,将第一原理和神经网络建模融为一体。我们对机器人飞艇进行了螺旋运动实验,将 ABNODE 与第一原理模型和其他数据驱动基准模型进行了比较,结果证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1