Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-11-11 DOI:10.1109/LRA.2024.3495454
Wangtao Lu;Lei Chen;Yunkai Wang;Yufei Wei;Zifei Wu;Rong Xiong;Yue Wang
{"title":"Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments","authors":"Wangtao Lu;Lei Chen;Yunkai Wang;Yufei Wei;Zifei Wu;Rong Xiong;Yue Wang","doi":"10.1109/LRA.2024.3495454","DOIUrl":null,"url":null,"abstract":"Trajectory planning in highly constrained environments is crucial for robotic navigation. Classical algorithms are widely used for their interpretability, generalization, and system robustness. However, these algorithms often require parameter retuning when adapting to new scenarios. To address this issue, we propose a demonstration data-driven reinforcement learning (RL) method for automatic parameter adjustment. Our approach includes two main components: a front-end policy network and a back-end asynchronous controller. The policy network selects appropriate parameters for the trajectory planner, while a discriminator in a Conditional Generative Adversarial Network (CGAN) evaluates the planned trajectory, using this evaluation as an imitation reward in RL. The asynchronous controller is employed for high-frequency trajectory tracking. Experiments conducted in both simulation and real-world demonstrate that our proposed method significantly enhances the performance of classical algorithms.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11641-11648"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10749994/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Trajectory planning in highly constrained environments is crucial for robotic navigation. Classical algorithms are widely used for their interpretability, generalization, and system robustness. However, these algorithms often require parameter retuning when adapting to new scenarios. To address this issue, we propose a demonstration data-driven reinforcement learning (RL) method for automatic parameter adjustment. Our approach includes two main components: a front-end policy network and a back-end asynchronous controller. The policy network selects appropriate parameters for the trajectory planner, while a discriminator in a Conditional Generative Adversarial Network (CGAN) evaluates the planned trajectory, using this evaluation as an imitation reward in RL. The asynchronous controller is employed for high-frequency trajectory tracking. Experiments conducted in both simulation and real-world demonstrate that our proposed method significantly enhances the performance of classical algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在高度受限环境中进行轨迹规划的数据驱动参数调整演示
在高度受限的环境中进行轨迹规划对机器人导航至关重要。经典算法因其可解释性、通用性和系统鲁棒性而被广泛使用。然而,这些算法在适应新场景时往往需要重新调整参数。为了解决这个问题,我们提出了一种用于自动调整参数的数据驱动强化学习(RL)方法。我们的方法包括两个主要部分:前端策略网络和后端异步控制器。策略网络为轨迹规划器选择合适的参数,而条件生成对抗网络(CGAN)中的判别器则对规划轨迹进行评估,并将评估结果作为 RL 中的模仿奖励。异步控制器用于高频轨迹跟踪。在模拟和实际环境中进行的实验表明,我们提出的方法显著提高了经典算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1