Design and Shape Control of Robotic Morphing Interface With Reprogrammable Stiffness Based on Machine Learning

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-10-21 DOI:10.1109/LRA.2024.3484160
Xiaojie Diao;Juncai Long;Jituo Li;Chengdi Zhou;Huixu Dong;Guodong Lu
{"title":"Design and Shape Control of Robotic Morphing Interface With Reprogrammable Stiffness Based on Machine Learning","authors":"Xiaojie Diao;Juncai Long;Jituo Li;Chengdi Zhou;Huixu Dong;Guodong Lu","doi":"10.1109/LRA.2024.3484160","DOIUrl":null,"url":null,"abstract":"Deformable organisms in nature inspire the design of shape-shifting robots, including soft robots, bionic robots and physical human-robot interfaces. However, to achieve multi-objective shape imitation and multi-form transformation, shape-shifting robots often require complex actuation systems, control strategies, and inverse design algorithms. In this letter, we propose a robotic morphing interface with reprogrammable stiffness (RoMI-RS) based on machine learning. RoMI-RS uses a circular elastic bilayer as the base, which can produce isotropic deformation under pneumatic actuation. By repeatedly attaching and detaching high-stiffness limiting layers to the surface of the base, the stiffness distribution can be reprogrammed, guiding anisotropic deformation. Thus, without changing the base material or actuation mechanism, RoMI-RS can precisely mimic various static shapes and dynamic movements. To address the nonlinear coupling of soft materials and pneumatic actuation, we employed a data-driven approach to inversely design limiting layer arrangements (i.e., the stiffness distribution of RoMI-RS) in the form of images. Hence, our proposed pneumatic RoMI-RS not only responds quickly and deforms reversibly but also allows users to intuitively and rapidly reconfigure target shapes. We also demonstrate the applications of RoMI-RS in shape-shifting robotics, particularly in soft grippers and physical human-robot interfaces, verifying its deformation flexibility and adaptability.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"10930-10937"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10723810/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Deformable organisms in nature inspire the design of shape-shifting robots, including soft robots, bionic robots and physical human-robot interfaces. However, to achieve multi-objective shape imitation and multi-form transformation, shape-shifting robots often require complex actuation systems, control strategies, and inverse design algorithms. In this letter, we propose a robotic morphing interface with reprogrammable stiffness (RoMI-RS) based on machine learning. RoMI-RS uses a circular elastic bilayer as the base, which can produce isotropic deformation under pneumatic actuation. By repeatedly attaching and detaching high-stiffness limiting layers to the surface of the base, the stiffness distribution can be reprogrammed, guiding anisotropic deformation. Thus, without changing the base material or actuation mechanism, RoMI-RS can precisely mimic various static shapes and dynamic movements. To address the nonlinear coupling of soft materials and pneumatic actuation, we employed a data-driven approach to inversely design limiting layer arrangements (i.e., the stiffness distribution of RoMI-RS) in the form of images. Hence, our proposed pneumatic RoMI-RS not only responds quickly and deforms reversibly but also allows users to intuitively and rapidly reconfigure target shapes. We also demonstrate the applications of RoMI-RS in shape-shifting robotics, particularly in soft grippers and physical human-robot interfaces, verifying its deformation flexibility and adaptability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的具有可重新编程刚度的机器人变形界面的设计与形状控制
自然界中的可变形生物激发了变形机器人的设计灵感,包括软体机器人、仿生机器人和物理人机界面。然而,要实现多目标形状模仿和多形态变换,变形机器人往往需要复杂的执行系统、控制策略和反向设计算法。在这封信中,我们提出了一种基于机器学习的具有可重新编程刚度的机器人变形界面(RoMI-RS)。RoMI-RS 以圆形弹性双层膜为基底,在气动驱动下可产生各向同性的变形。通过在基底表面反复粘贴和剥离高刚度限制层,可对刚度分布进行重新编程,从而引导各向异性变形。因此,在不改变基底材料或驱动机制的情况下,RoMI-RS 可以精确模拟各种静态形状和动态运动。为了解决软材料和气动致动器的非线性耦合问题,我们采用了一种数据驱动方法,以图像的形式反向设计限制层排列(即 RoMI-RS 的刚度分布)。因此,我们提出的气动 RoMI-RS 不仅能快速响应和可逆变形,还能让用户直观、快速地重新配置目标形状。我们还展示了 RoMI-RS 在变形机器人技术中的应用,特别是在软抓手和物理人机界面中的应用,验证了其变形的灵活性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1