Mengyue Wang, Yanjiao Wang, Chengcheng Wang, Qingbin Ni, Peng Zhao, Baoliang Sun and Ying Wang
{"title":"Development point-of-care based lateral flow biosensor for the rapid detection of exosomes of subarachnoid hemorrhage patients†","authors":"Mengyue Wang, Yanjiao Wang, Chengcheng Wang, Qingbin Ni, Peng Zhao, Baoliang Sun and Ying Wang","doi":"10.1039/D4TC02620A","DOIUrl":null,"url":null,"abstract":"<p >Exosomes are extracellular vesicles with diameters ranging from 30–200 nm, and the biomolecules contained in exosomes have been used as biomarkers for the diagnosis and prognosis of certain diseases. Despite their increasingly recognized relevance as biomarkers, traditional strategies to achieve simple, sensitive, and accurate detection of exosomes remain a challenge due to the limitations of cumbersome separation and analysis of exosome-containing samples. We successfully developed a new lateral flow assay (LFA) for accurate quantification of plasma-derived exosomes in patients with subarachnoid hemorrhage (SAH). In this study, based on an ultrasensitive and simple surface-enhanced Raman scattering (SERS) strategy, we accurately captured membrane proteins in exosome samples by preparing 4-MPA antibody-modified Au–Ag nanoshuttles (Au–Ag NSs) as SERS probes on LFA strips to achieve dual detection of target proteins. The strategy had good stability and sensitivity with the limit of detection (LOD) of 0.7 × 10<small><sup>4</sup></small> particles per mL for CD9 and CD81. Regarding our findings of LFA using Au–Ag NSs, this platform can be used as a tool for accurate, rapid and real-time exosome detection with high sensitivity and quantification.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02620a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Exosomes are extracellular vesicles with diameters ranging from 30–200 nm, and the biomolecules contained in exosomes have been used as biomarkers for the diagnosis and prognosis of certain diseases. Despite their increasingly recognized relevance as biomarkers, traditional strategies to achieve simple, sensitive, and accurate detection of exosomes remain a challenge due to the limitations of cumbersome separation and analysis of exosome-containing samples. We successfully developed a new lateral flow assay (LFA) for accurate quantification of plasma-derived exosomes in patients with subarachnoid hemorrhage (SAH). In this study, based on an ultrasensitive and simple surface-enhanced Raman scattering (SERS) strategy, we accurately captured membrane proteins in exosome samples by preparing 4-MPA antibody-modified Au–Ag nanoshuttles (Au–Ag NSs) as SERS probes on LFA strips to achieve dual detection of target proteins. The strategy had good stability and sensitivity with the limit of detection (LOD) of 0.7 × 104 particles per mL for CD9 and CD81. Regarding our findings of LFA using Au–Ag NSs, this platform can be used as a tool for accurate, rapid and real-time exosome detection with high sensitivity and quantification.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.