Average Deformation of Sessile Drop Under High Frequency Vibrations

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE Microgravity Science and Technology Pub Date : 2024-10-31 DOI:10.1007/s12217-024-10146-4
Andrey Ivantsov, Tatyana Lyubimova
{"title":"Average Deformation of Sessile Drop Under High Frequency Vibrations","authors":"Andrey Ivantsov,&nbsp;Tatyana Lyubimova","doi":"10.1007/s12217-024-10146-4","DOIUrl":null,"url":null,"abstract":"<div><p>The behavior of a liquid drop placed on an oscillating solid substrate is studied. The vibrations are normal to the plane of the substrate. The amplitude of the vibrations is assumed to be small compared to the radius of the drop, and the vibration frequency is suppose to be much larger than the frequencies of the natural oscillations of the drop shape. The effect of vibrations on the drop shape is studied for a small values of the vibration parameter equal to the ratio of the vibration pressure to the capillary pressure. It is assumed that the drop surface in the absence of vibrations is hemispherical. Under the influence of vibrations, the drop height decreases and the base area increases. In this case, the surface deformation changes proportionally to the vibration parameter. At finite values of the vibration parameter, the quasi-equilibrium shape can differ significantly from spherical. In this case, the problem for pulsations is solved numerically using the boundary element method. To determine the average shape of a drop at finite values of the vibration parameter, the variational principle is used. The obtained results are in good agreement with the solution in the limit of small values of the vibration parameter. With an increase in the vibration parameter, the average contact angle decreases, the area of the base area increases, and the height decreases.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10146-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The behavior of a liquid drop placed on an oscillating solid substrate is studied. The vibrations are normal to the plane of the substrate. The amplitude of the vibrations is assumed to be small compared to the radius of the drop, and the vibration frequency is suppose to be much larger than the frequencies of the natural oscillations of the drop shape. The effect of vibrations on the drop shape is studied for a small values of the vibration parameter equal to the ratio of the vibration pressure to the capillary pressure. It is assumed that the drop surface in the absence of vibrations is hemispherical. Under the influence of vibrations, the drop height decreases and the base area increases. In this case, the surface deformation changes proportionally to the vibration parameter. At finite values of the vibration parameter, the quasi-equilibrium shape can differ significantly from spherical. In this case, the problem for pulsations is solved numerically using the boundary element method. To determine the average shape of a drop at finite values of the vibration parameter, the variational principle is used. The obtained results are in good agreement with the solution in the limit of small values of the vibration parameter. With an increase in the vibration parameter, the average contact angle decreases, the area of the base area increases, and the height decreases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高频振动下无柄水滴的平均变形量
研究了放置在振动固体基底上的液滴的行为。振动方向为基底平面的法线。假定振动的振幅与液滴的半径相比很小,振动频率远大于液滴形状的自然振荡频率。振动对液滴形状的影响是在振动参数值较小的情况下进行研究的,振动参数值等于振动压力与毛细管压力之比。假定液滴表面在没有振动的情况下是半球形的。在振动的影响下,液滴高度减小,底部面积增大。在这种情况下,表面变形与振动参数成比例变化。在有限的振动参数值下,准平衡形状可能与球形有很大差异。在这种情况下,脉动问题采用边界元法进行数值求解。为了确定振动参数有限值时液滴的平均形状,使用了变分原理。得到的结果与振动参数小值极限下的解法十分吻合。随着振动参数的增大,平均接触角减小,底面积增大,高度减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
期刊最新文献
Control Strategy Optimization of Thermodynamic Venting System in Liquid Hydrogen Storage Tank Under Microgravity Model-Based Investigation of a Dielectrophoretic Microfluidic Device for the Separation of Polystyrene Particles Gravity-Independent Relaxation Oscillations Enhancing Mixing Performance in a Continuous-Flow Microchannel Investigation on Dynamic Properties and Heat Transfer Mechanism of Droplet Impact on the Heated Wall Under a Leidenfrost State The Influence of Gravity Modulation on a Stability of Plane-Parallel Convective Flow in a Vertical Fluid Layer with Heat Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1