Design and synthesis of Au nanoparticles decorated NiCo2O4@MnO2 core-shell nanowires for high-performance supercapacitors

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Bulletin of Materials Science Pub Date : 2024-11-01 DOI:10.1007/s12034-024-03316-y
Chao Pan, Li Dong
{"title":"Design and synthesis of Au nanoparticles decorated NiCo2O4@MnO2 core-shell nanowires for high-performance supercapacitors","authors":"Chao Pan,&nbsp;Li Dong","doi":"10.1007/s12034-024-03316-y","DOIUrl":null,"url":null,"abstract":"<div><p>We developed a facile synthetic method to construct a novel sandwiched coaxial core–shell heterojunction electrode by combining MnO<sub>2</sub> nanoflakes wrapped in Au nanoparticles decorated NiCo<sub>2</sub>O<sub>4</sub> nanowires (NW) with carbon fiber cloth (NiCo<sub>2</sub>O<sub>4</sub>@Au@MnO<sub>2</sub>). XRD, SEM and TEM techniques were used to characterize the structures of NiCo<sub>2</sub>O<sub>4</sub>@Au@MnO<sub>2</sub>. Electrochemical measurements confirmed that such nanostructured composites possessed an electrochemical capacitance that was higher than that of each individual component due to synergistic effects. The NiCo<sub>2</sub>O<sub>4</sub>@Au@MnO<sub>2</sub> electrode has extremely high specific capacitance (1906.6 F g<sup>−1</sup> at 1 A g<sup>−1</sup>) and excellent cycling stability (92.5% after 10,000 cycles) in a three-electrode system with 6M KOH electrolyte. Furthermore, the performance of an asymmetric supercapacitor of NiCo<sub>2</sub>O<sub>4</sub>@Au@MnO<sub>2</sub>//AC was further evaluated, and the energy density was 98.3 Wh kg<sup>−1</sup> at a power density of 0.8 W kg<sup>−1</sup>. The excellent electrochemical performance of such nanoscale architecture electrodes provides a new route for developing high-performance supercapacitors with 3D multicomponent heterojunction core-shell structures.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03316-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We developed a facile synthetic method to construct a novel sandwiched coaxial core–shell heterojunction electrode by combining MnO2 nanoflakes wrapped in Au nanoparticles decorated NiCo2O4 nanowires (NW) with carbon fiber cloth (NiCo2O4@Au@MnO2). XRD, SEM and TEM techniques were used to characterize the structures of NiCo2O4@Au@MnO2. Electrochemical measurements confirmed that such nanostructured composites possessed an electrochemical capacitance that was higher than that of each individual component due to synergistic effects. The NiCo2O4@Au@MnO2 electrode has extremely high specific capacitance (1906.6 F g−1 at 1 A g−1) and excellent cycling stability (92.5% after 10,000 cycles) in a three-electrode system with 6M KOH electrolyte. Furthermore, the performance of an asymmetric supercapacitor of NiCo2O4@Au@MnO2//AC was further evaluated, and the energy density was 98.3 Wh kg−1 at a power density of 0.8 W kg−1. The excellent electrochemical performance of such nanoscale architecture electrodes provides a new route for developing high-performance supercapacitors with 3D multicomponent heterojunction core-shell structures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计和合成用于高性能超级电容器的金纳米粒子装饰的 NiCo2O4@MnO2 核壳纳米线
我们开发了一种简便的合成方法,通过碳纤维布(NiCo2O4@Au@MnO2)将金纳米颗粒装饰的镍钴氧化物纳米线(NW)包裹的二氧化锰纳米片(MnO2)构建成新型的夹层同轴核壳异质结电极。利用 XRD、SEM 和 TEM 技术表征了 NiCo2O4@Au@MnO2 的结构。电化学测量证实,由于协同效应,这种纳米结构复合材料的电化学电容高于每个单独成分的电化学电容。在使用 6M KOH 电解液的三电极系统中,NiCo2O4@Au@MnO2 电极具有极高的比电容(1 A g-1 时为 1906.6 F g-1)和出色的循环稳定性(10,000 次循环后为 92.5%)。此外,还进一步评估了 NiCo2O4@Au@MnO2//AC 不对称超级电容器的性能,在功率密度为 0.8 W kg-1 时,能量密度为 98.3 Wh kg-1。这种纳米级结构电极的优异电化学性能为开发具有三维多组分异质结核壳结构的高性能超级电容器提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
期刊最新文献
Microwave-assisted synthesis of graphene oxide–cobalt ferrite magnetic nanocomposite for water remediation Effect of Silene vulgaris callus pectin on physicochemical properties of composite hydrogel beads based on pectin and sodium metasilicate Impact of magnesium hydroxide particles decorated Kenaf fibre on the physico-mechanical properties of polypropylene-based composites Structure and properties of RE2HE2O7 thermal barrier ceramics designed with high-entropy at different sites Production of biodegradable packaging film based on PLA/starch: optimization via response surface methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1