Z. A. Temerdashev, A. G. Abakumov, A. A. Khalafyan, O. N. Shelud’ko
{"title":"Formation of an Elemental Image in the Soil–Grapes–Wine Chain and Studying the Relationships of Substantial Forms of the Elements","authors":"Z. A. Temerdashev, A. G. Abakumov, A. A. Khalafyan, O. N. Shelud’ko","doi":"10.1134/S1061934824700965","DOIUrl":null,"url":null,"abstract":"<p>The possibility of establishing relationships between the distribution of total concentrations and mobile forms of the elements in vineyard soils was studied using ICP spectrometry and chemometric analysis. The authenticity of wines based on varietal and geographical characteristics was studied based on the relationships between the elemental compositions of wine, grapes, and soil from the place where the grapes grew. The nature of the supply of the elements in the soil–grape chain and the degree of absorption of mobile forms of soil elements by grape berries were also assessed using the biological absorption coefficient. Each grape variety formed an elemental image due to the individual character of assimilation of the studied elements. The concentrations of K, Rb, and Ti found in grape samples were higher than the concentrations of mobile forms of these elements in the soil regardless of the variety. Scatter diagrams of canonical values and projections of observations onto the factor plane, constructed using multivariate statistical analysis methods for element concentrations, showed that each grape variety was localized in a certain part of the plane to form groups of homogeneous objects (clusters). The contributions of elements to the grape variety discrimination model decreased in the sequence Mo, Cu, K, Ni, Ba, Ca, Pb, Li, Mg, Fe, Ti, Zn, Rb, Al, and V or, on a regional basis, Rb, Al, K, Sr, Co, Na, Pb, Ca, and Ni. The results obtained can be used to determine markers responsible for the varietal and regional affiliations of wines.</p>","PeriodicalId":606,"journal":{"name":"Journal of Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061934824700965","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The possibility of establishing relationships between the distribution of total concentrations and mobile forms of the elements in vineyard soils was studied using ICP spectrometry and chemometric analysis. The authenticity of wines based on varietal and geographical characteristics was studied based on the relationships between the elemental compositions of wine, grapes, and soil from the place where the grapes grew. The nature of the supply of the elements in the soil–grape chain and the degree of absorption of mobile forms of soil elements by grape berries were also assessed using the biological absorption coefficient. Each grape variety formed an elemental image due to the individual character of assimilation of the studied elements. The concentrations of K, Rb, and Ti found in grape samples were higher than the concentrations of mobile forms of these elements in the soil regardless of the variety. Scatter diagrams of canonical values and projections of observations onto the factor plane, constructed using multivariate statistical analysis methods for element concentrations, showed that each grape variety was localized in a certain part of the plane to form groups of homogeneous objects (clusters). The contributions of elements to the grape variety discrimination model decreased in the sequence Mo, Cu, K, Ni, Ba, Ca, Pb, Li, Mg, Fe, Ti, Zn, Rb, Al, and V or, on a regional basis, Rb, Al, K, Sr, Co, Na, Pb, Ca, and Ni. The results obtained can be used to determine markers responsible for the varietal and regional affiliations of wines.
期刊介绍:
The Journal of Analytical Chemistry is an international peer reviewed journal that covers theoretical and applied aspects of analytical chemistry; it informs the reader about new achievements in analytical methods, instruments and reagents. Ample space is devoted to problems arising in the analysis of vital media such as water and air. Consideration is given to the detection and determination of metal ions, anions, and various organic substances. The journal welcomes manuscripts from all countries in the English or Russian language.