V. G. Amelin, O. E. Emel’yanov, Z. A. Ch. Shogah, A. V. Tret’yakov
{"title":"Detection and Identification of Starch and Flour Adulteration by Digital Colorimetry and Fourier-Transform Near-IR Spectroscopy","authors":"V. G. Amelin, O. E. Emel’yanov, Z. A. Ch. Shogah, A. V. Tret’yakov","doi":"10.1134/S1061934824700916","DOIUrl":null,"url":null,"abstract":"<p>A colorimetric device is proposed for identifying and detecting the adulteration of various types of starch and flour by diffuse reflection of UV and IR radiation from LEDs. The color characteristics of the samples (RGB channel values) were determined using cameras on OnePlus 10 Pro and iPhone 14 smartphones with installed applications PhotoMetrix PRO, ColorGrab, and RGBer. Near-infrared spectra (4000–10 000 cm<sup>–1</sup>) were recorded on a Fourier-transform infrared spectrometer. Specialized software packages, including TQ Analyst 9, The Unscrambler X, and XLSTAT, processed the dataset of colorimetric and spectral characteristics. The identification features included clustering patterns for different types of starch and flour in principal component analysis and hierarchical cluster analysis. Optimal wavelengths for determining the quality of adulteration of the tested samples were identified: for starch, the simultaneous use of all LEDs (365, 390, 850, and 880 nm); for flour, LEDs with wavelengths of 365 and 390 nm. The qualitative adulteration was assessed using graphs of the dependence of the F1 component on the mass fraction of the added foreign substance in the starch or flour. The effectiveness of the colorimetric method was confirmed by Fourier-transform infrared spectroscopy in the near-infrared region.</p>","PeriodicalId":606,"journal":{"name":"Journal of Analytical Chemistry","volume":"79 11","pages":"1515 - 1523"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061934824700916","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A colorimetric device is proposed for identifying and detecting the adulteration of various types of starch and flour by diffuse reflection of UV and IR radiation from LEDs. The color characteristics of the samples (RGB channel values) were determined using cameras on OnePlus 10 Pro and iPhone 14 smartphones with installed applications PhotoMetrix PRO, ColorGrab, and RGBer. Near-infrared spectra (4000–10 000 cm–1) were recorded on a Fourier-transform infrared spectrometer. Specialized software packages, including TQ Analyst 9, The Unscrambler X, and XLSTAT, processed the dataset of colorimetric and spectral characteristics. The identification features included clustering patterns for different types of starch and flour in principal component analysis and hierarchical cluster analysis. Optimal wavelengths for determining the quality of adulteration of the tested samples were identified: for starch, the simultaneous use of all LEDs (365, 390, 850, and 880 nm); for flour, LEDs with wavelengths of 365 and 390 nm. The qualitative adulteration was assessed using graphs of the dependence of the F1 component on the mass fraction of the added foreign substance in the starch or flour. The effectiveness of the colorimetric method was confirmed by Fourier-transform infrared spectroscopy in the near-infrared region.
期刊介绍:
The Journal of Analytical Chemistry is an international peer reviewed journal that covers theoretical and applied aspects of analytical chemistry; it informs the reader about new achievements in analytical methods, instruments and reagents. Ample space is devoted to problems arising in the analysis of vital media such as water and air. Consideration is given to the detection and determination of metal ions, anions, and various organic substances. The journal welcomes manuscripts from all countries in the English or Russian language.