Qian Wang , Jiawei Guan , Haichuan Du , Xinpeng Yang , Futing Shi , Daoxian Li , Pengzhi Guo , Yangjun Xia
{"title":"Enhancing the photovoltaic performance of dithienobenzodithiophene based polymer donors through backbone fluorination and radical polymer additives","authors":"Qian Wang , Jiawei Guan , Haichuan Du , Xinpeng Yang , Futing Shi , Daoxian Li , Pengzhi Guo , Yangjun Xia","doi":"10.1016/j.polymer.2024.127780","DOIUrl":null,"url":null,"abstract":"<div><div>Unveiling the corresponding relationship between the molecular architecture of organic semiconductor materials and the morphology within the active layer of the organic solar cells (OSCs) is essential for the innovation of novel optical materials and the refinement of device optimization strategies to overcome the bottlenecks in efficiency. In this work, three dithieno[3,2-<em>b</em>]benzo[1,2-<em>b</em>;4,5-<em>b’</em>]dithiophene(DTBDT)-<em>alt</em>-benzothiadiazole (BT) based polymer donors (PDTBDT-F-BT, PDTBDT-F-FBT, and PDTBDT-F-2FBT) with varying fluorine atom content within their acceptor segments were designed and synthesized, and the photovoltaic performances of these polymers when blended with Y6 were meticulously investigated. Incorporating fluorine atoms into the BT segment was observed to not only incrementally increase the optical bandgap, lower the HOMO energy level, and bolster the self-aggregation of the polymer, but also effectively reduce the surface energy of the resulting polymer, thereby altering the donor-acceptor (D-A) interfacial spacing and the phase separation in the blend films as illustrated by molecular dynamic simulations and morphology characterization. As a result, the OSCs fabricated using PDTBDT-F-FBT, which incorporates a single fluorine substitution in the BT unit, demonstrated the highest power conversion efficiency (PCE) of 9.92 %. More importantly, this blend film's morphology is likely to be more conducive to the incorporation of the radical polymer additive, GDTA. This has resulted in a notable reduction in voltage loss, ultimately achieving a higher PCE of 11.55 % for the PDTBDT-F-FBT:Y6 based OSCs. This research uncovered a synergistic impact of backbone fluorination and the incorporation of radical polymer additives, which contributed to reducing the energy loss and enhancing the efficiency of OSCs from DTBDT-based polymer donors.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"314 ","pages":"Article 127780"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124011169","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Unveiling the corresponding relationship between the molecular architecture of organic semiconductor materials and the morphology within the active layer of the organic solar cells (OSCs) is essential for the innovation of novel optical materials and the refinement of device optimization strategies to overcome the bottlenecks in efficiency. In this work, three dithieno[3,2-b]benzo[1,2-b;4,5-b’]dithiophene(DTBDT)-alt-benzothiadiazole (BT) based polymer donors (PDTBDT-F-BT, PDTBDT-F-FBT, and PDTBDT-F-2FBT) with varying fluorine atom content within their acceptor segments were designed and synthesized, and the photovoltaic performances of these polymers when blended with Y6 were meticulously investigated. Incorporating fluorine atoms into the BT segment was observed to not only incrementally increase the optical bandgap, lower the HOMO energy level, and bolster the self-aggregation of the polymer, but also effectively reduce the surface energy of the resulting polymer, thereby altering the donor-acceptor (D-A) interfacial spacing and the phase separation in the blend films as illustrated by molecular dynamic simulations and morphology characterization. As a result, the OSCs fabricated using PDTBDT-F-FBT, which incorporates a single fluorine substitution in the BT unit, demonstrated the highest power conversion efficiency (PCE) of 9.92 %. More importantly, this blend film's morphology is likely to be more conducive to the incorporation of the radical polymer additive, GDTA. This has resulted in a notable reduction in voltage loss, ultimately achieving a higher PCE of 11.55 % for the PDTBDT-F-FBT:Y6 based OSCs. This research uncovered a synergistic impact of backbone fluorination and the incorporation of radical polymer additives, which contributed to reducing the energy loss and enhancing the efficiency of OSCs from DTBDT-based polymer donors.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.