Polymer Electrolyte Based All-Solid-State Rechargeable Fluoride Ion Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-02 DOI:10.1002/adfm.202410891
Yifan Yu, Guyue Li, Chilin Li
{"title":"Polymer Electrolyte Based All-Solid-State Rechargeable Fluoride Ion Batteries","authors":"Yifan Yu, Guyue Li, Chilin Li","doi":"10.1002/adfm.202410891","DOIUrl":null,"url":null,"abstract":"Rechargeable fluoride ion batteries (FIBs) are one of the most promising energy storage candidates in view of high energy density and low cost. The development of highly F-conductive, safe, and flexible electrolytes is the central task for the construction of high-performance FIBs. Hereby, this work first proposes a polyvinyl alcohol (PVA)-borax-glycerol (PBG) polymer electrolyte. The F<sup>−</sup> transport along one PVA chain is realized by the interaction between F<sup>−</sup> and -OH on the PVA chain and the motion of PVA chain would facilitate the migration of F<sup>−</sup>. The B(OH)<sub>4</sub><sup>−</sup> dissociated from borax can be used as a cross-linking agent, and react with the hydroxyl groups on PVA by a dehydration process to form a polymer with a 3D cross-linked structure. The optimized ionic conductivity (as high as 2.82 × 10<sup>−4</sup> S cm<sup>−1</sup> at 30 °C and 1.08 × 10<sup>−3</sup> S cm<sup>−1</sup> at 60 °C) of PBG can be obtained. The flat and soft surface of PBG electrolytes can significantly reduce the activation energy for the interfacial transport process. Benefitting from the high ionic conductivity and easier interfacial transport, the PBG electrolyte makes the all-solid-state FIBs enable reversible cycling at a high current density of 125 mA g<sup>−1</sup>.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"87 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202410891","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable fluoride ion batteries (FIBs) are one of the most promising energy storage candidates in view of high energy density and low cost. The development of highly F-conductive, safe, and flexible electrolytes is the central task for the construction of high-performance FIBs. Hereby, this work first proposes a polyvinyl alcohol (PVA)-borax-glycerol (PBG) polymer electrolyte. The F transport along one PVA chain is realized by the interaction between F and -OH on the PVA chain and the motion of PVA chain would facilitate the migration of F. The B(OH)4 dissociated from borax can be used as a cross-linking agent, and react with the hydroxyl groups on PVA by a dehydration process to form a polymer with a 3D cross-linked structure. The optimized ionic conductivity (as high as 2.82 × 10−4 S cm−1 at 30 °C and 1.08 × 10−3 S cm−1 at 60 °C) of PBG can be obtained. The flat and soft surface of PBG electrolytes can significantly reduce the activation energy for the interfacial transport process. Benefitting from the high ionic conductivity and easier interfacial transport, the PBG electrolyte makes the all-solid-state FIBs enable reversible cycling at a high current density of 125 mA g−1.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚合物电解质的全固态可充电氟离子电池
可充电氟离子电池(FIB)具有能量密度高、成本低的特点,是最有前途的储能技术之一。开发高导氟、安全、灵活的电解质是制造高性能氟离子电池的核心任务。因此,本研究首先提出了一种聚乙烯醇(PVA)-硼砂-甘油(PBG)聚合物电解质。通过 F- 与 PVA 链上的 -OH 相互作用实现 F- 沿 PVA 链的迁移,PVA 链的运动将促进 F- 的迁移。从硼砂中离解出的 B(OH)4- 可用作交联剂,通过脱水过程与 PVA 上的羟基反应,形成具有三维交联结构的聚合物。PBG 的离子导电性得到了优化(30 °C 时高达 2.82 × 10-4 S cm-1,60 °C 时高达 1.08 × 10-3 S cm-1)。PBG 电解质表面平整柔软,可显著降低界面传输过程的活化能。得益于高离子电导率和更容易的界面传输,PBG 电解质使全固态 FIB 能够在 125 mA g-1 的高电流密度下实现可逆循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Precise Molecular Engineering of Multi-Suborganelle Targeted NIR Type‑I AIE Photosensitizer and Design of Cell Membrane-Anchored Anti-Tumor Pyroptosis Vaccine Wax-Casted Macroporous Polyamidoxime Hydrogel Particles Encapsulated in Alginate-Polyacrylic Acid Beads for Highly Efficient Uranium Capture from Seawater 3D Printing of Multiscale Biomimetic Scaffold for Tendon Regeneration Directly Printable and Adhesive Liquid Metal Ink for Wearable Devices Advanced Aerodynamics-Driven Energy Harvesting Leveraging Galloping-Flutter Synergy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1