Novel Bulk Quantum Hall Effect in Nanostructured TaP Macroscopic Crystals.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-20 Epub Date: 2024-11-04 DOI:10.1021/acs.nanolett.4c03601
Yang-Yang Lv, Lin Cao, Shuang Han, Ye-Cheng Luo, Jian Zhou, Ming-Hui Lu, Ye Xiong, Shu-Hua Yao, Li Sheng, Faxian Xiu, Xiao-Ping Liu, Yan-Bin Chen
{"title":"Novel Bulk Quantum Hall Effect in Nanostructured TaP Macroscopic Crystals.","authors":"Yang-Yang Lv, Lin Cao, Shuang Han, Ye-Cheng Luo, Jian Zhou, Ming-Hui Lu, Ye Xiong, Shu-Hua Yao, Li Sheng, Faxian Xiu, Xiao-Ping Liu, Yan-Bin Chen","doi":"10.1021/acs.nanolett.4c03601","DOIUrl":null,"url":null,"abstract":"<p><p>Bulk quantum Hall effect (QHE), the natural extension of the two-dimensional (2D) QHE, is one of the representative phenomena of coherent electron transport. However, bulk QHE has rarely been reported in real materials with macroscopic sizes. Here, we report a novel bulk QHE in macroscopic millimeter-sized and nanostructured TaP crystals consisting of nanometer-scale lamellae. Specifically, the simultaneous quantum plateaus were observed in both transverse resistivity <i>ρ</i><sub><i>xy</i></sub> and vertical resistivity <i>ρ</i><sub><i>zz</i></sub>. The bulk QHE is attributable to synergetic action between Landau cyclotron movement under magnetic field <i>B</i> and periodically modulated potential due to the nanometer-scaled lamellae. This mechanism would form the fixed number of edge states along <i>B</i>-perpendicular and <i>B</i>-parallel directions respectively, equivalent to stacked 2D-QHE layers, leading to quantized <i>ρ</i><sub><i>xy</i></sub> and <i>ρ</i><sub><i>zz</i></sub>. Our work verifies that microstructure engineering could result in the coherent transport of electrons and generate new quantum phenomena in bulk materials.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"14625-14631"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03601","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bulk quantum Hall effect (QHE), the natural extension of the two-dimensional (2D) QHE, is one of the representative phenomena of coherent electron transport. However, bulk QHE has rarely been reported in real materials with macroscopic sizes. Here, we report a novel bulk QHE in macroscopic millimeter-sized and nanostructured TaP crystals consisting of nanometer-scale lamellae. Specifically, the simultaneous quantum plateaus were observed in both transverse resistivity ρxy and vertical resistivity ρzz. The bulk QHE is attributable to synergetic action between Landau cyclotron movement under magnetic field B and periodically modulated potential due to the nanometer-scaled lamellae. This mechanism would form the fixed number of edge states along B-perpendicular and B-parallel directions respectively, equivalent to stacked 2D-QHE layers, leading to quantized ρxy and ρzz. Our work verifies that microstructure engineering could result in the coherent transport of electrons and generate new quantum phenomena in bulk materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米结构 TaP 宏观晶体中的新型块体量子霍尔效应。
体量子霍尔效应(QHE)是二维量子霍尔效应的自然延伸,是相干电子传输的代表性现象之一。然而,在具有宏观尺寸的真实材料中,很少有关于体量子霍尔效应的报道。在这里,我们报告了在由纳米级薄片组成的毫米级和纳米级结构的宏观 TaP 晶体中的新型体量 QHE。具体来说,我们在横向电阻率 ρxy 和垂直电阻率 ρzz 中同时观察到了量子高原。体质量子高能效应可归因于磁场 B 作用下的朗道回旋运动与纳米尺度薄片所产生的周期性调制电势之间的协同作用。这种机制将分别沿垂直于 B 和平行于 B 的方向形成固定数量的边缘态,相当于堆叠的二维 QHE 层,从而导致量子化的 ρxy 和 ρzz。我们的工作验证了微结构工程可以导致电子的相干传输,并在块体材料中产生新的量子现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Revealing the Structural Architecture of Anions Confining Mo2CTx MXene Layers for Robust Li+ Storage Rechargeable Afterglow Superclusters for NIR-Excitable Repetitive Phototherapy Control of Surface Plasmon Propagation and Terahertz Near-Field Waveforms in a Scanning Tunneling Microscope Visualizing the Submolecular Organization of αβ-Tubulin Subunits on the Microtubule Inner Surface Using Atomic Force Microscopy Two-Dimensional Electrically Conductive Metal–Organic Framework Boosts Synaptic Plasticity for Dynamic Image Refresh, Classification, and Efferent Neuromuscular Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1