Revealing the Structural Architecture of Anions Confining Mo2CTx MXene Layers for Robust Li+ Storage

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-21 DOI:10.1021/acs.nanolett.4c02314
Junyan Li, Wei Zhang, Xin Ge, Wenjuan Han, Xiangyu Wu, Boning Xu, Hong-Yan Liu, Xin Liu, Yu Wang, Ming Lu, Weitao Zheng
{"title":"Revealing the Structural Architecture of Anions Confining Mo2CTx MXene Layers for Robust Li+ Storage","authors":"Junyan Li, Wei Zhang, Xin Ge, Wenjuan Han, Xiangyu Wu, Boning Xu, Hong-Yan Liu, Xin Liu, Yu Wang, Ming Lu, Weitao Zheng","doi":"10.1021/acs.nanolett.4c02314","DOIUrl":null,"url":null,"abstract":"Controllable cation preintercalation enables enhancing the electrochemical activity and kinetics of MXenes. However, the electrostatic repulsion between cations and electrolyte ions induces deteriorative electrolyte ion transport kinetics. Herein, by shifting perceptions from the cation to anion strategies, we successfully preintercalate Cl<sup>–</sup>, SO<sub>4</sub><sup>2–</sup>, and PO<sub>4</sub><sup>3–</sup> anions into Mo<sub>2</sub>CT<sub><i>x</i></sub> MXene via the utilization of diverse etching agents. Due to a smaller ionic radius and low charge, more Cl<sup>–</sup> ions can be intercalated into Mo<sub>2</sub>CT<sub><i>x</i></sub> MXene and induce higher dislocation density, larger interlayer spacing, and more negative Zeta potential value. Relying on <i>in situ</i> X-ray diffraction, we monitored the interlayer evolution. The lower lithium-ion concentration gradient in the Mo<sub>2</sub>CT<sub><i>x</i></sub> MXene delivers a lower concentration polarization, a fast charge and ion transfer kinetics, and an excellent lifespan, holding 540.49 mAh g<sup>–1</sup> after 400 cycles at 200 mA g<sup>–1</sup>. The effect of anion preintercalation provides new insights into the function-oriented design of MXene materials.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"13 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02314","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Controllable cation preintercalation enables enhancing the electrochemical activity and kinetics of MXenes. However, the electrostatic repulsion between cations and electrolyte ions induces deteriorative electrolyte ion transport kinetics. Herein, by shifting perceptions from the cation to anion strategies, we successfully preintercalate Cl, SO42–, and PO43– anions into Mo2CTx MXene via the utilization of diverse etching agents. Due to a smaller ionic radius and low charge, more Cl ions can be intercalated into Mo2CTx MXene and induce higher dislocation density, larger interlayer spacing, and more negative Zeta potential value. Relying on in situ X-ray diffraction, we monitored the interlayer evolution. The lower lithium-ion concentration gradient in the Mo2CTx MXene delivers a lower concentration polarization, a fast charge and ion transfer kinetics, and an excellent lifespan, holding 540.49 mAh g–1 after 400 cycles at 200 mA g–1. The effect of anion preintercalation provides new insights into the function-oriented design of MXene materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示限制 Mo2CTx MXene 层的阴离子结构,实现稳定的 Li+ 储存
可控的阳离子预插层可提高 MXenes 的电化学活性和动力学性能。然而,阳离子与电解质离子之间的静电排斥会导致电解质离子传输动力学恶化。在此,我们将视角从阳离子转向阴离子,通过使用不同的蚀刻剂,成功地将 Cl-、SO42- 和 PO43- 阴离子预插层到 Mo2CTx MXene 中。由于 Cl- 离子具有较小的离子半径和较低的电荷,因此可以将更多的 Cl- 离子插层到 Mo2CTx MXene 中,从而诱导出更高的位错密度、更大的层间距和更负的 Zeta 电位值。我们利用原位 X 射线衍射监测了层间演变。Mo2CTx MXene 中较低的锂离子浓度梯度带来了较低的浓度极化、快速的电荷和离子转移动力学以及出色的寿命,在 200 mA g-1 的条件下循环 400 次后仍能保持 540.49 mAh g-1。阴离子预插值的效果为以功能为导向设计 MXene 材料提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Revealing the Structural Architecture of Anions Confining Mo2CTx MXene Layers for Robust Li+ Storage Rechargeable Afterglow Superclusters for NIR-Excitable Repetitive Phototherapy Control of Surface Plasmon Propagation and Terahertz Near-Field Waveforms in a Scanning Tunneling Microscope Visualizing the Submolecular Organization of αβ-Tubulin Subunits on the Microtubule Inner Surface Using Atomic Force Microscopy Two-Dimensional Electrically Conductive Metal–Organic Framework Boosts Synaptic Plasticity for Dynamic Image Refresh, Classification, and Efferent Neuromuscular Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1