Immunoproteomic and Immunoinformatic Approaches Identify Sensitive Antigens for Diagnosing Anisakis pegreffii Infection.

IF 4 2区 医学 Q2 CHEMISTRY, MEDICINAL ACS Infectious Diseases Pub Date : 2024-12-13 Epub Date: 2024-11-04 DOI:10.1021/acsinfecdis.4c00708
Xiaoxu Wang, Minhao Zeng, Guofeng Cheng
{"title":"Immunoproteomic and Immunoinformatic Approaches Identify Sensitive Antigens for Diagnosing <i>Anisakis pegreffii</i> Infection.","authors":"Xiaoxu Wang, Minhao Zeng, Guofeng Cheng","doi":"10.1021/acsinfecdis.4c00708","DOIUrl":null,"url":null,"abstract":"<p><p><i>Anisakis</i> are foodborne parasites that opportunistically parasitize humans, leading to acute abdominal symptoms and allergies. Besides gastroscopy, no other diagnostic technique is available. Consequently, it is necessary to identify specific biomarkers and then develop molecular techniques for diagnosing <i>Anisakis</i> infection. In the present study, we used immunoproteomic and immunoinformatic approaches to identify sensitive antigens for diagnosing <i>Anisakis pegreffii</i> infection. A total of three proteins, including Ani609 (VDK51609), Ani941 (VDK75941), and AniS13, were identified based on immunoinformatic results. Then, the indirect ELISA method was developed based on the recombinant proteins, showing a similar diagnostic capability to that of parasitic soluble proteins. Next, a <i>Gaussia</i> luciferase immunoprecipitation assay (LIPS) was further developed upon the fusion of the proteins and <i>Gaussia</i> luciferase. The LIPS method indicated that <i>A. pegreffii</i> infection could be detected in rats as early as 1 week post infection, especially for Ani941. Overall, we identified the novel antigens using immunoproteomic and immunoinformatic approaches and then developed a sensitive method for diagnosing <i>A. pegreffii</i> infection, particularly for the early stage.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"4360-4368"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00708","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Anisakis are foodborne parasites that opportunistically parasitize humans, leading to acute abdominal symptoms and allergies. Besides gastroscopy, no other diagnostic technique is available. Consequently, it is necessary to identify specific biomarkers and then develop molecular techniques for diagnosing Anisakis infection. In the present study, we used immunoproteomic and immunoinformatic approaches to identify sensitive antigens for diagnosing Anisakis pegreffii infection. A total of three proteins, including Ani609 (VDK51609), Ani941 (VDK75941), and AniS13, were identified based on immunoinformatic results. Then, the indirect ELISA method was developed based on the recombinant proteins, showing a similar diagnostic capability to that of parasitic soluble proteins. Next, a Gaussia luciferase immunoprecipitation assay (LIPS) was further developed upon the fusion of the proteins and Gaussia luciferase. The LIPS method indicated that A. pegreffii infection could be detected in rats as early as 1 week post infection, especially for Ani941. Overall, we identified the novel antigens using immunoproteomic and immunoinformatic approaches and then developed a sensitive method for diagnosing A. pegreffii infection, particularly for the early stage.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
免疫蛋白组学和免疫形式学方法确定了诊断鹅口疮疥癣感染的敏感抗原。
疟原虫是一种食源性寄生虫,可伺机寄生于人体,导致急性腹部症状和过敏。除胃镜检查外,目前尚无其他诊断技术。因此,有必要确定特定的生物标志物,然后开发分子技术来诊断疟原虫感染。在本研究中,我们采用了免疫蛋白组学和免疫形式学方法来确定诊断虫弧菌感染的敏感抗原。根据免疫形式学结果,共鉴定出三种蛋白质,包括 Ani609(VDK51609)、Ani941(VDK75941)和 AniS13。然后,基于重组蛋白开发了间接 ELISA 方法,显示出与寄生虫可溶性蛋白相似的诊断能力。接着,在蛋白质与高斯荧光素酶融合的基础上,进一步开发了高斯荧光素酶免疫沉淀检测法(LIPS)。LIPS方法表明,大鼠感染A. pegreffii后最早可在1周内检测到,尤其是Ani941。总之,我们利用免疫蛋白组学和免疫形式学方法鉴定了新型抗原,然后开发了一种灵敏的方法来诊断 A. pegreffii 感染,尤其是早期感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
期刊最新文献
Non-Polio Enterovirus Inhibitors: Scaffolds, Targets, and Potency─What's New? The Calcium-Dependent Antibiotics: Structure-Activity Relationships and Determination of Their Lipid Target. Identification of Cysteine Metabolism Regulator (CymR)-Derived Pentapeptides as Nanomolar Inhibitors of Staphylococcus aureus O-Acetyl-l-serine Sulfhydrylase (CysK). Shape and Size Dependent Antimicrobial and Anti-biofilm Properties of Functionalized MoS2. Invention of Enmetazobactam: An Indian Triumph in Antimicrobial Drug Discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1