Cell-autonomous targeting of arabinogalactan by host immune factors inhibits mycobacterial growth.

IF 6.4 1区 生物学 Q1 BIOLOGY eLife Pub Date : 2024-11-04 DOI:10.7554/eLife.92737
Lianhua Qin, Junfang Xu, Jianxia Chen, Sen Wang, Ruijuan Zheng, Zhenling Cui, Zhonghua Liu, Xiangyang Wu, Jie Wang, Xiaochen Huang, Zhaohui Wang, Mingqiao Wang, Rong Pan, Stefan H E Kaufmann, Xun Meng, Lu Zhang, Wei Sha, Haipeng Liu
{"title":"Cell-autonomous targeting of arabinogalactan by host immune factors inhibits mycobacterial growth.","authors":"Lianhua Qin, Junfang Xu, Jianxia Chen, Sen Wang, Ruijuan Zheng, Zhenling Cui, Zhonghua Liu, Xiangyang Wu, Jie Wang, Xiaochen Huang, Zhaohui Wang, Mingqiao Wang, Rong Pan, Stefan H E Kaufmann, Xun Meng, Lu Zhang, Wei Sha, Haipeng Liu","doi":"10.7554/eLife.92737","DOIUrl":null,"url":null,"abstract":"<p><p>Deeper understanding of the crosstalk between host cells and <i>Mycobacterium tuberculosis</i> (Mtb) provides crucial guidelines for the rational design of novel intervention strategies against tuberculosis (TB). Mycobacteria possess a unique complex cell wall with arabinogalactan (AG) as a critical component. AG has been identified as a virulence factor of Mtb which is recognized by host galectin-9. Here, we demonstrate that galectin-9 directly inhibited mycobacterial growth through AG-binding property of carbohydrate-recognition domain 2. Furthermore, IgG antibodies with AG specificity were detected in the serum of TB patients. Based on the interaction between galectin-9 and AG, we developed a monoclonal antibody (mAb) screening assay and identified AG-specific mAbs which profoundly inhibit Mtb growth. Mechanistically, proteomic profiling and morphological characterizations revealed that AG-specific mAbs regulate AG biosynthesis, thereby inducing cell wall swelling. Thus, direct AG-binding by galectin-9 or antibodies contributes to protection against TB. Our findings pave the way for the rational design of novel immunotherapeutic strategies for TB control.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534329/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.92737","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Deeper understanding of the crosstalk between host cells and Mycobacterium tuberculosis (Mtb) provides crucial guidelines for the rational design of novel intervention strategies against tuberculosis (TB). Mycobacteria possess a unique complex cell wall with arabinogalactan (AG) as a critical component. AG has been identified as a virulence factor of Mtb which is recognized by host galectin-9. Here, we demonstrate that galectin-9 directly inhibited mycobacterial growth through AG-binding property of carbohydrate-recognition domain 2. Furthermore, IgG antibodies with AG specificity were detected in the serum of TB patients. Based on the interaction between galectin-9 and AG, we developed a monoclonal antibody (mAb) screening assay and identified AG-specific mAbs which profoundly inhibit Mtb growth. Mechanistically, proteomic profiling and morphological characterizations revealed that AG-specific mAbs regulate AG biosynthesis, thereby inducing cell wall swelling. Thus, direct AG-binding by galectin-9 or antibodies contributes to protection against TB. Our findings pave the way for the rational design of novel immunotherapeutic strategies for TB control.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宿主免疫因子对阿拉伯半乳聚糖的细胞自主靶向作用抑制了分枝杆菌的生长。
深入了解宿主细胞与结核分枝杆菌(Mtb)之间的相互作用,为合理设计新型结核病(TB)干预策略提供了重要指导。分枝杆菌拥有独特的复杂细胞壁,阿拉伯半乳聚糖(AG)是其中的关键成分。AG已被确认为Mtb的毒力因子,可被宿主的galectin-9识别。在这里,我们证明了加列汀-9 通过碳水化合物识别域 2 的 AG 结合特性直接抑制了分枝杆菌的生长。基于加列汀-9与AG之间的相互作用,我们开发了一种单克隆抗体(mAb)筛选方法,并鉴定出了能有效抑制Mtb生长的AG特异性mAb。从机理上讲,蛋白质组学分析和形态学特征显示,AG 特异性 mAbs 可调节 AG 的生物合成,从而诱导细胞壁膨胀。因此,Galectin-9 或抗体直接与 AG 结合有助于防止结核病。我们的发现为合理设计新型结核病控制免疫治疗策略铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
期刊最新文献
NE contribution to rebooting unconsciousness caused by midazolam. Neurotrophic factor Neuritin modulates T cell electrical and metabolic state for the balance of tolerance and immunity. The gamma rhythm as a guardian of brain health. Zika virus remodels and hijacks IGF2BP2 ribonucleoprotein complex to promote viral replication organelle biogenesis. Extramacrochaetae regulates Notch signaling in the Drosophila eye through non-apoptotic caspase activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1