In vitro antibacterial activity of photoactivated flavonoid glycosides against Acinetobacter baumannii.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY AMB Express Pub Date : 2024-11-04 DOI:10.1186/s13568-024-01781-6
Maryam Pourhajibagher, Zahra Javanmard, Abbas Bahador
{"title":"In vitro antibacterial activity of photoactivated flavonoid glycosides against Acinetobacter baumannii.","authors":"Maryam Pourhajibagher, Zahra Javanmard, Abbas Bahador","doi":"10.1186/s13568-024-01781-6","DOIUrl":null,"url":null,"abstract":"<p><p>Acinetobacter baumannii's extensive antibiotic resistance makes its infections difficult to treat, so effective strategies to fight this bacterium are urgently needed. This study aims to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) mediated by Rutin-Gal(III) complex and Quercetin against A. baumannii. Absorbance spectra, fluorescence spectra, and minimum inhibitory concentration (MIC) of Rutin-Gal(III) complex and Quercetin were determined. The intracellular reactive oxygen species (ROS), extracellular polymeric substances (EPS), cell membrane permeability, expression of ompA and bla<sub>OXA-23</sub>, anti-biofilm activity, and anti-metabolic activity of Rutin-Gal(III) complex- and Quercetin-mediated aPDT were measured. Rutin-Gal(III) complex and Quercetin revealed absorption peaks in the visible spectra. Quercetin and Rutin-Gal(III) complex displayed fluorescence peaks at 524 nm and 540 nm, respectively. MIC values for the Rutin-Gal(III) complex and Quercetin were 64 µg/mL and 256 µg/mL, respectively. Quercetin- and Rutin-Gal(III) complex-mediated aPDT significantly reduced the colony forming units/mL (58.4% and 67.5%), EPS synthesis (47.4% and 56.5%), metabolic activity (30.5% and 36.3%), ompA (5.5- and 10.5-fold), and bla<sub>OXA-23</sub> (4.1-fold and 7.8-fold) genes expression (respectively; all P < 0.05). Quercetin- and Rutin-Gal(III) complex-mediated aPDT enhanced notable biofilm degradation (36.2% and 40.6%), ROS production (2.55- and 2.90-folds), and membrane permeability (10.8- and 9.6-folds) (respectively; all P < 0.05). The findings indicate that Rutin-Gal(III) complex- and Quercetin-mediated aPDT exhibits antibacterial properties and could serve as a valuable adjunctive strategy to conventional antibiotic treatments for A. baumannii infections. One limitation of this study is that it was conducted solely on the standard strain; testing on clinical isolates would allow for more reliable interpretation of the results.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"119"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535136/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01781-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acinetobacter baumannii's extensive antibiotic resistance makes its infections difficult to treat, so effective strategies to fight this bacterium are urgently needed. This study aims to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) mediated by Rutin-Gal(III) complex and Quercetin against A. baumannii. Absorbance spectra, fluorescence spectra, and minimum inhibitory concentration (MIC) of Rutin-Gal(III) complex and Quercetin were determined. The intracellular reactive oxygen species (ROS), extracellular polymeric substances (EPS), cell membrane permeability, expression of ompA and blaOXA-23, anti-biofilm activity, and anti-metabolic activity of Rutin-Gal(III) complex- and Quercetin-mediated aPDT were measured. Rutin-Gal(III) complex and Quercetin revealed absorption peaks in the visible spectra. Quercetin and Rutin-Gal(III) complex displayed fluorescence peaks at 524 nm and 540 nm, respectively. MIC values for the Rutin-Gal(III) complex and Quercetin were 64 µg/mL and 256 µg/mL, respectively. Quercetin- and Rutin-Gal(III) complex-mediated aPDT significantly reduced the colony forming units/mL (58.4% and 67.5%), EPS synthesis (47.4% and 56.5%), metabolic activity (30.5% and 36.3%), ompA (5.5- and 10.5-fold), and blaOXA-23 (4.1-fold and 7.8-fold) genes expression (respectively; all P < 0.05). Quercetin- and Rutin-Gal(III) complex-mediated aPDT enhanced notable biofilm degradation (36.2% and 40.6%), ROS production (2.55- and 2.90-folds), and membrane permeability (10.8- and 9.6-folds) (respectively; all P < 0.05). The findings indicate that Rutin-Gal(III) complex- and Quercetin-mediated aPDT exhibits antibacterial properties and could serve as a valuable adjunctive strategy to conventional antibiotic treatments for A. baumannii infections. One limitation of this study is that it was conducted solely on the standard strain; testing on clinical isolates would allow for more reliable interpretation of the results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光活化黄酮苷对鲍曼不动杆菌的体外抗菌活性。
鲍曼不动杆菌(Acinetobacter baumannii)具有广泛的抗生素耐药性,导致其感染难以治疗,因此迫切需要有效的策略来对抗这种细菌。本研究旨在评估芦丁-缬氨酸(III)复合物和槲皮素介导的抗菌光动力疗法(aPDT)对鲍曼不动杆菌的疗效。测定了芦丁-Gal(III)复合物和槲皮素的吸收光谱、荧光光谱和最低抑菌浓度(MIC)。测定了芦丁-Gal(III)复合物和槲皮素介导的 aPDT 的细胞内活性氧(ROS)、细胞外聚合物质(EPS)、细胞膜通透性、ombA 和 blaOXA-23 的表达、抗生物膜活性和抗代谢活性。芦丁-Gal(III)复合物和槲皮素在可见光谱中显示出吸收峰。槲皮素和芦丁-Gal(III)复合物分别在 524 纳米和 540 纳米处显示荧光峰。芦丁-Gal(III)复合物和槲皮素的 MIC 值分别为 64 微克/毫升和 256 微克/毫升。槲皮素和芦丁-Gal(III)复合物介导的 aPDT 可显著降低菌落形成单位/毫升(58.4% 和 67.5%)、EPS 合成(47.4% 和 56.5%)、代谢活性(30.5% 和 36.3%)、ombA(5.5 倍和 10.5 倍)和 blaOXA-23 (4.1 倍和 7.8 倍)基因的表达量(分别为所有 P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AMB Express
AMB Express BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
2.70%
发文量
141
审稿时长
13 weeks
期刊介绍: AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.
期刊最新文献
Optimized production and characterization of a thermostable cellulase from Streptomyces thermodiastaticus strain. Marine chitinase AfChi: green defense management against Colletotrichum gloeosporioides and anthracnose. Antibiotics and lectin C for diarrhea control intervention in piglets and influences. Correction: Improving carboxymethyl cellulose edible coating using ZnO nanoparticles from irradiated Alternaria tenuissima. Detection and molecular characterization of carbapenem-resistant gram-negative bacterial isolates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1