Leaf Photosynthetic and Photoprotective Acclimation in the Ultraviolet-A1 and Blue Light Regions Follow a Continuous, Shallow Gradient.

IF 6 1区 生物学 Q1 PLANT SCIENCES Plant, Cell & Environment Pub Date : 2024-11-04 DOI:10.1111/pce.15256
Xuguang Sun, Elias Kaiser, Leo F M Marcelis, Tao Li
{"title":"Leaf Photosynthetic and Photoprotective Acclimation in the Ultraviolet-A1 and Blue Light Regions Follow a Continuous, Shallow Gradient.","authors":"Xuguang Sun, Elias Kaiser, Leo F M Marcelis, Tao Li","doi":"10.1111/pce.15256","DOIUrl":null,"url":null,"abstract":"<p><p>Although blue light is known to produce leaves with high photosynthetic capacity, the role of the blue-adjacent UV-A1 (350-400 nm) in driving leaf photosynthetic acclimation is less studied. Tomato plants were grown under hybrid red and blue (RB; 95/5 μmol m<sup>-2</sup> s<sup>-1</sup>), as well as four treatments in which RB was supplemented with 50 μmol m<sup>-2</sup> s<sup>-1</sup> peaking at 365, 385, 410 and 450 nm, respectively. Acclimation to 365-450 nm led to a shallow gradient increase in trait values (i.e., photosynthetic capacity, pigmentation and dry mass content) as the peak wavelength increased. Furthermore, both UV-A1 and blue light grown leaves showed efficient photoprotection under high light intensity. When treated plants were transferred to fluctuating light for 5 days, leaves from all treatments showed increases in photosynthetic capacity, which were strongest in RB, followed by additional UV-A1 treatments; RB grown leaves showed reductions in maximum quantum yield of photosystem II, while UV-A1 grown leaves showed increases. We conclude that both UV-A1 and blue light effectively trigger photosynthetic and photoprotective acclimation, the extent of acclimation becoming stronger the longer the peak wavelength is. Acclimatory responses to UV-A1 and blue light are thus not distinct from one another, but follow a continuous gradient.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15256","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Although blue light is known to produce leaves with high photosynthetic capacity, the role of the blue-adjacent UV-A1 (350-400 nm) in driving leaf photosynthetic acclimation is less studied. Tomato plants were grown under hybrid red and blue (RB; 95/5 μmol m-2 s-1), as well as four treatments in which RB was supplemented with 50 μmol m-2 s-1 peaking at 365, 385, 410 and 450 nm, respectively. Acclimation to 365-450 nm led to a shallow gradient increase in trait values (i.e., photosynthetic capacity, pigmentation and dry mass content) as the peak wavelength increased. Furthermore, both UV-A1 and blue light grown leaves showed efficient photoprotection under high light intensity. When treated plants were transferred to fluctuating light for 5 days, leaves from all treatments showed increases in photosynthetic capacity, which were strongest in RB, followed by additional UV-A1 treatments; RB grown leaves showed reductions in maximum quantum yield of photosystem II, while UV-A1 grown leaves showed increases. We conclude that both UV-A1 and blue light effectively trigger photosynthetic and photoprotective acclimation, the extent of acclimation becoming stronger the longer the peak wavelength is. Acclimatory responses to UV-A1 and blue light are thus not distinct from one another, but follow a continuous gradient.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
紫外线-A1 和蓝光区域的叶片光合作用和光保护适应性呈现连续的浅梯度。
虽然众所周知蓝光能使叶片具有较高的光合能力,但对邻近蓝光的紫外线-A1(350-400 nm)在推动叶片光合适应方面的作用研究较少。番茄植株在红蓝混合(RB;95/5 μmol m-2 s-1)以及四种处理条件下生长,在这四种处理条件下,RB 分别补充 50 μmol m-2 s-1 峰值为 365、385、410 和 450 纳米的紫外线。适应 365-450 纳米波长后,随着峰值波长的增加,性状值(即光合能力、色素沉积和干物质含量)呈浅梯度增加。此外,在高光照强度下,UV-A1 和蓝光下生长的叶片都表现出高效的光保护作用。将处理过的植物转移到波动光下 5 天后,所有处理的叶片都显示出光合作用能力的提高,其中 RB 处理的光合作用能力最强,其次是 UV-A1 处理;RB 生长的叶片显示出光合系统 II 最大量子产率的降低,而 UV-A1 生长的叶片则显示出光合作用能力的提高。我们的结论是,UV-A1 和蓝光都能有效地引发光合作用和光保护适应,峰值波长越长,适应程度越强。因此,对紫外线-A1 和蓝光的适应性反应并不是相互独立的,而是遵循一个连续的梯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
期刊最新文献
Whole-Genome Identification of the Flax Fatty Acid Desaturase Gene Family and Functional Analysis of the LuFAD2.1 Gene Under Cold Stress Conditions. Metabolism Interaction Between Bacillus cereus SESY and Brassica napus Contributes to Enhance Host Selenium Absorption and Accumulation. Out on a Limb: Testing the Hydraulic Vulnerability Segmentation Hypothesis in Trees Across Multiple Ecosystems. Wheat Tae-MIR1118 Constitutes a Functional Module With Calmodulin TaCaM2-1 and MYB Member TaMYB44 to Modulate Plant Low-N Stress Response. Diurnal Rhythmicity in the Rhizosphere Microbiome-Mechanistic Insights and Significance for Rhizosphere Function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1