Qianqian Fu, Ruiping Huang, Futian Li, John Beardall, David A Hutchins, Jingwen Liu, Kunshan Gao
{"title":"Warming and UV Radiation Alleviate the Effect of Virus Infection on the Microalga Emiliania huxleyi.","authors":"Qianqian Fu, Ruiping Huang, Futian Li, John Beardall, David A Hutchins, Jingwen Liu, Kunshan Gao","doi":"10.1111/pce.15262","DOIUrl":null,"url":null,"abstract":"<p><p>The marine microalga Emiliania huxleyi is widely distributed in the surface oceans and is prone to infection by coccolithoviruses that can terminate its blooms. However, little is known about how global change factors like solar UV radiation (UVR) and ocean warming affect the host-virus interaction. We grew the microalga at 2 temperature levels with or without the virus in the presence or absence of UVR and investigated the physiological and transcriptional responses. We showed that viral infection noticeably reduced photosynthesis and growth of the alga but was less harmful to its physiology under conditions where UVR influenced viral DNA expression. In the virus-infected cells, the combination of UVR and warming (+4°C) led to a 13-fold increase in photosynthetic carbon fixation rate, with warming alone contributing a change of about 5-7-fold. This was attributed to upregulated expression of genes related to carboxylation and light-harvesting proteins under the influence of UVR, and to warming-reduced infectivity. In the absence of UVR, viral infection downregulated the metabolic pathways of photosynthesis and fatty acid degradation. Our results suggest that solar UV exposure in a warming ocean can reduce the severity of viral attack on this ecologically important microalga, potentially prolonging its blooms.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15262","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The marine microalga Emiliania huxleyi is widely distributed in the surface oceans and is prone to infection by coccolithoviruses that can terminate its blooms. However, little is known about how global change factors like solar UV radiation (UVR) and ocean warming affect the host-virus interaction. We grew the microalga at 2 temperature levels with or without the virus in the presence or absence of UVR and investigated the physiological and transcriptional responses. We showed that viral infection noticeably reduced photosynthesis and growth of the alga but was less harmful to its physiology under conditions where UVR influenced viral DNA expression. In the virus-infected cells, the combination of UVR and warming (+4°C) led to a 13-fold increase in photosynthetic carbon fixation rate, with warming alone contributing a change of about 5-7-fold. This was attributed to upregulated expression of genes related to carboxylation and light-harvesting proteins under the influence of UVR, and to warming-reduced infectivity. In the absence of UVR, viral infection downregulated the metabolic pathways of photosynthesis and fatty acid degradation. Our results suggest that solar UV exposure in a warming ocean can reduce the severity of viral attack on this ecologically important microalga, potentially prolonging its blooms.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.