Integrative Proteomic and Phosphoproteomic Profiling Reveals the Salt-Responsive Mechanisms in Two Rice Varieties (Oryza Sativa subsp. Japonica and Indica).
Cheol Woo Min, Ravi Gupta, Gi Hyun Lee, Jun-Hyeon Cho, Yu-Jin Kim, Yiming Wang, Ki-Hong Jung, Sun Tae Kim
{"title":"Integrative Proteomic and Phosphoproteomic Profiling Reveals the Salt-Responsive Mechanisms in Two Rice Varieties (Oryza Sativa subsp. Japonica and Indica).","authors":"Cheol Woo Min, Ravi Gupta, Gi Hyun Lee, Jun-Hyeon Cho, Yu-Jin Kim, Yiming Wang, Ki-Hong Jung, Sun Tae Kim","doi":"10.1002/pmic.202400251","DOIUrl":null,"url":null,"abstract":"<p><p>Salinity stress induces ionic and osmotic imbalances in rice plants that in turn negatively affect the photosynthesis rate, resulting in growth retardation and yield penalty. Efforts have, therefore, been carried out to understand the mechanism of salt tolerance, however, the complexity of biological processes at proteome levels remains a major challenge. Here, we performed a comparative proteome and phosphoproteome profiling of microsome enriched fractions of salt-tolerant (cv. IR73; indica) and salt-susceptible (cv. Dongjin/DJ; japonica) rice varieties. This approach led to the identification of 5856 proteins, of which 473 and 484 proteins showed differential modulation between DJ and IR73 sample sets, respectively. The phosphoproteome analysis led to the identification of a total of 10,873 phosphopeptides of which 2929 and 3049 phosphopeptides showed significant differences in DJ and IR73 sample sets, respectively. The integration of proteome and phosphoproteome data showed activation of ABA and Ca<sup>2+</sup> signaling components exclusively in the salt-tolerant variety IR73 in response to salinity stress. Taken together, our results highlight the changes at proteome and phosphoproteome levels and provide a mechanistic understanding of salinity stress tolerance in rice.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400251","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Salinity stress induces ionic and osmotic imbalances in rice plants that in turn negatively affect the photosynthesis rate, resulting in growth retardation and yield penalty. Efforts have, therefore, been carried out to understand the mechanism of salt tolerance, however, the complexity of biological processes at proteome levels remains a major challenge. Here, we performed a comparative proteome and phosphoproteome profiling of microsome enriched fractions of salt-tolerant (cv. IR73; indica) and salt-susceptible (cv. Dongjin/DJ; japonica) rice varieties. This approach led to the identification of 5856 proteins, of which 473 and 484 proteins showed differential modulation between DJ and IR73 sample sets, respectively. The phosphoproteome analysis led to the identification of a total of 10,873 phosphopeptides of which 2929 and 3049 phosphopeptides showed significant differences in DJ and IR73 sample sets, respectively. The integration of proteome and phosphoproteome data showed activation of ABA and Ca2+ signaling components exclusively in the salt-tolerant variety IR73 in response to salinity stress. Taken together, our results highlight the changes at proteome and phosphoproteome levels and provide a mechanistic understanding of salinity stress tolerance in rice.
期刊介绍:
PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.