Zhenqiu Shu, Min Xia, Kaiwen Tan, Yongbing Zhang, Zhengtao Yu
{"title":"Multi-level multi-view network based on structural contrastive learning for scRNA-seq data clustering.","authors":"Zhenqiu Shu, Min Xia, Kaiwen Tan, Yongbing Zhang, Zhengtao Yu","doi":"10.1093/bib/bbae562","DOIUrl":null,"url":null,"abstract":"<p><p>Clustering plays a crucial role in analyzing scRNA-seq data and has been widely used in studying cellular distribution over the past few years. However, the high dimensionality and complexity of scRNA-seq data pose significant challenges to achieving accurate clustering from a singular perspective. To address these challenges, we propose a novel approach, called multi-level multi-view network based on structural consistency contrastive learning (scMMN), for scRNA-seq data clustering. Firstly, the proposed method constructs shallow views through the $k$-nearest neighbor ($k$NN) and diffusion mapping (DM) algorithms, and then deep views are generated by utilizing the graph Laplacian filters. These deep multi-view data serve as the input for representation learning. To improve the clustering performance of scRNA-seq data, contrastive learning is introduced to enhance the discrimination ability of our network. Specifically, we construct a group contrastive loss for representation features and a structural consistency contrastive loss for structural relationships. Extensive experiments on eight real scRNA-seq datasets show that the proposed method outperforms other state-of-the-art methods in scRNA-seq data clustering tasks. Our source code has already been available at https://github.com/szq0816/scMMN.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae562","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Clustering plays a crucial role in analyzing scRNA-seq data and has been widely used in studying cellular distribution over the past few years. However, the high dimensionality and complexity of scRNA-seq data pose significant challenges to achieving accurate clustering from a singular perspective. To address these challenges, we propose a novel approach, called multi-level multi-view network based on structural consistency contrastive learning (scMMN), for scRNA-seq data clustering. Firstly, the proposed method constructs shallow views through the $k$-nearest neighbor ($k$NN) and diffusion mapping (DM) algorithms, and then deep views are generated by utilizing the graph Laplacian filters. These deep multi-view data serve as the input for representation learning. To improve the clustering performance of scRNA-seq data, contrastive learning is introduced to enhance the discrimination ability of our network. Specifically, we construct a group contrastive loss for representation features and a structural consistency contrastive loss for structural relationships. Extensive experiments on eight real scRNA-seq datasets show that the proposed method outperforms other state-of-the-art methods in scRNA-seq data clustering tasks. Our source code has already been available at https://github.com/szq0816/scMMN.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.