{"title":"Cutting-Edge Strategies for Overcoming Therapeutic Barriers in Alzheimer's Disease.","authors":"Aparna Inamdar, Bannimath Gurupadayya, Prashant Halagali, Nandakumar S, Rashmi Pathak, Himalaya Singh, Himanshu Sharma","doi":"10.2174/0113816128344571241018154506","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) remains one of the hardest neurodegenerative diseases to treat due to its enduring cognitive deterioration and memory loss. Despite extensive research, few viable treatment approaches have been found; these are mostly due to several barriers, such as the disease's complex biology, limited pharmaceutical efficacy, and the BBB. This presentation discusses current strategies for addressing these therapeutic barriers to enhance AD treatment. Innovative drug delivery methods including liposomes, exosomes, and nanoparticles may be able to pass the blood-brain barrier and allow medicine to enter specific brain regions. These innovative strategies of medicine distribution reduce systemic side effects by improving absorption. Moreover, the development of disease-modifying treatments that target tau protein tangles, amyloid-beta plaques, and neuroinflammation offers the chance to influence the course of the illness rather than only treat its symptoms. Furthermore, gene therapy and CRISPR-Cas9 technologies have surfaced as potentially groundbreaking methods for addressing the underlying genetic defects associated with AD. Furthermore, novel approaches to patient care may involve the utilization of existing medications having neuroprotective properties, such as those for diabetes and cardiovascular conditions. Furthermore, biomarker research and personalized medicine have made individualized therapy approaches possible, ensuring that patients receive the best care possible based on their unique genetic and molecular profiles.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128344571241018154506","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) remains one of the hardest neurodegenerative diseases to treat due to its enduring cognitive deterioration and memory loss. Despite extensive research, few viable treatment approaches have been found; these are mostly due to several barriers, such as the disease's complex biology, limited pharmaceutical efficacy, and the BBB. This presentation discusses current strategies for addressing these therapeutic barriers to enhance AD treatment. Innovative drug delivery methods including liposomes, exosomes, and nanoparticles may be able to pass the blood-brain barrier and allow medicine to enter specific brain regions. These innovative strategies of medicine distribution reduce systemic side effects by improving absorption. Moreover, the development of disease-modifying treatments that target tau protein tangles, amyloid-beta plaques, and neuroinflammation offers the chance to influence the course of the illness rather than only treat its symptoms. Furthermore, gene therapy and CRISPR-Cas9 technologies have surfaced as potentially groundbreaking methods for addressing the underlying genetic defects associated with AD. Furthermore, novel approaches to patient care may involve the utilization of existing medications having neuroprotective properties, such as those for diabetes and cardiovascular conditions. Furthermore, biomarker research and personalized medicine have made individualized therapy approaches possible, ensuring that patients receive the best care possible based on their unique genetic and molecular profiles.
阿尔茨海默病(AD)是最难治疗的神经退行性疾病之一,因为它会导致患者认知能力持续退化和记忆力丧失。尽管进行了广泛的研究,但几乎没有找到可行的治疗方法;这主要是由于该疾病复杂的生物学特性、有限的药物疗效和生物BB等几个障碍造成的。本讲座将讨论解决这些治疗障碍的当前策略,以提高注意力缺失症的治疗效果。包括脂质体、外泌体和纳米颗粒在内的创新给药方法或许能通过血脑屏障,让药物进入特定脑区。这些创新的药物分配策略可通过改善吸收来减少全身副作用。此外,针对 tau 蛋白缠结、淀粉样蛋白-β 斑块和神经炎症的疾病改变疗法的开发为影响疾病进程而非仅仅治疗症状提供了机会。此外,基因治疗和CRISPR-Cas9技术已成为解决与AD相关的潜在基因缺陷的潜在突破性方法。此外,患者护理的新方法可能包括利用现有的具有神经保护特性的药物,如治疗糖尿病和心血管疾病的药物。此外,生物标志物研究和个性化医疗使个体化治疗方法成为可能,确保患者根据其独特的基因和分子特征获得最佳治疗。
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.