Isabel M Guijarro, Moisés Garcés, Juan J Badiola, Marta Monzón
{"title":"<i>In situ</i> assessment of neuroinflammatory cytokines in different stages of ovine natural prion disease.","authors":"Isabel M Guijarro, Moisés Garcés, Juan J Badiola, Marta Monzón","doi":"10.3389/fvets.2024.1404770","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>According to the neuroinflammatory hypothesis, a cytokine-mediated host innate immune response may be involved in the mechanisms that contribute to the process of neurodegeneration. Specifically, regarding prion diseases, some experimental murine models have evidenced an altered profile of inflammatory intermediaries. However, the local inflammatory response has rarely been assessed, and never in tissues from different natural models throughout the progression of neurodegeneration.</p><p><strong>Methods: </strong>The aim of this study was to use immunohistochemistry (IHC) to <i>in situ</i> assess the temporal protein expression of several cytokines in the cerebellum of sheep suffering from various clinical stages of scrapie.</p><p><strong>Results and discussion: </strong>Clear changes in the expression of most of the assessed markers were observed in the affected sheep compared to the healthy control sheep, and from different stages. In summary, this preliminary IHC study focusing in the Purkinje cell layer changes demonstrate that all cytokines or respective receptors studied (IL-1, IL-1R, IL-2R, IL-6, IL-10R, and TNFαR) except for IFNγR are disease-associated signaling proteins showing an increase or decrease in relation to the progression of clinical disease. In the future, this study will be extended to other inflammatory mediators and brain regions, focusing in particular on the release of these inflammatory mediators by astroglial and microglial populations.</p>","PeriodicalId":12772,"journal":{"name":"Frontiers in Veterinary Science","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528339/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Veterinary Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3389/fvets.2024.1404770","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: According to the neuroinflammatory hypothesis, a cytokine-mediated host innate immune response may be involved in the mechanisms that contribute to the process of neurodegeneration. Specifically, regarding prion diseases, some experimental murine models have evidenced an altered profile of inflammatory intermediaries. However, the local inflammatory response has rarely been assessed, and never in tissues from different natural models throughout the progression of neurodegeneration.
Methods: The aim of this study was to use immunohistochemistry (IHC) to in situ assess the temporal protein expression of several cytokines in the cerebellum of sheep suffering from various clinical stages of scrapie.
Results and discussion: Clear changes in the expression of most of the assessed markers were observed in the affected sheep compared to the healthy control sheep, and from different stages. In summary, this preliminary IHC study focusing in the Purkinje cell layer changes demonstrate that all cytokines or respective receptors studied (IL-1, IL-1R, IL-2R, IL-6, IL-10R, and TNFαR) except for IFNγR are disease-associated signaling proteins showing an increase or decrease in relation to the progression of clinical disease. In the future, this study will be extended to other inflammatory mediators and brain regions, focusing in particular on the release of these inflammatory mediators by astroglial and microglial populations.
期刊介绍:
Frontiers in Veterinary Science is a global, peer-reviewed, Open Access journal that bridges animal and human health, brings a comparative approach to medical and surgical challenges, and advances innovative biotechnology and therapy.
Veterinary research today is interdisciplinary, collaborative, and socially relevant, transforming how we understand and investigate animal health and disease. Fundamental research in emerging infectious diseases, predictive genomics, stem cell therapy, and translational modelling is grounded within the integrative social context of public and environmental health, wildlife conservation, novel biomarkers, societal well-being, and cutting-edge clinical practice and specialization. Frontiers in Veterinary Science brings a 21st-century approach—networked, collaborative, and Open Access—to communicate this progress and innovation to both the specialist and to the wider audience of readers in the field.
Frontiers in Veterinary Science publishes articles on outstanding discoveries across a wide spectrum of translational, foundational, and clinical research. The journal''s mission is to bring all relevant veterinary sciences together on a single platform with the goal of improving animal and human health.