A fish intestinal in vitro model for investigation of lipid metabolism and steatosis

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular and cell biology of lipids Pub Date : 2024-10-28 DOI:10.1016/j.bbalip.2024.159573
{"title":"A fish intestinal in vitro model for investigation of lipid metabolism and steatosis","authors":"","doi":"10.1016/j.bbalip.2024.159573","DOIUrl":null,"url":null,"abstract":"<div><div>Choline is now recognized as an essential nutrient to ensure lipid transport in Atlantic salmon. Its deficiency leads to excessive lipid accumulation in the enterocytes, a condition known as steatosis. The knowledge of lipid metabolism and steatosis in fish remains limited, motivating the use of in vitro intestinal models to perform deeper explorations. This study aimed to create an in vitro steatosis model using RTdi-MI, a new cell line derived from the distal intestine of rainbow trout. Cells were exposed to varying oleic acid (OA) concentrations over different time points (24 h, 72 h, and 168 h). Results indicated that the increasing OA concentration enhanced intracellular lipid droplet formation. Quantitative lipid analysis confirmed OA accumulation, which intensified with prolonged exposure and increased OA dose. Moreover, all cells, including controls, exhibited fatty acid metabolic activity. Such outcome was confirmed by light and fluorescence microscopy. Additionally, RTdi-MI cells expressed genes involved in lipid metabolism and synthesis similar to in vivo conditions. Collectively, our findings demonstrate the ability of RTdi-MI cells to accumulate OA in intracellular lipid droplets and mirror in vivo steatosis conditions, offering a new tool for exploring fish intestinal lipid metabolism.</div></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198124001239","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Choline is now recognized as an essential nutrient to ensure lipid transport in Atlantic salmon. Its deficiency leads to excessive lipid accumulation in the enterocytes, a condition known as steatosis. The knowledge of lipid metabolism and steatosis in fish remains limited, motivating the use of in vitro intestinal models to perform deeper explorations. This study aimed to create an in vitro steatosis model using RTdi-MI, a new cell line derived from the distal intestine of rainbow trout. Cells were exposed to varying oleic acid (OA) concentrations over different time points (24 h, 72 h, and 168 h). Results indicated that the increasing OA concentration enhanced intracellular lipid droplet formation. Quantitative lipid analysis confirmed OA accumulation, which intensified with prolonged exposure and increased OA dose. Moreover, all cells, including controls, exhibited fatty acid metabolic activity. Such outcome was confirmed by light and fluorescence microscopy. Additionally, RTdi-MI cells expressed genes involved in lipid metabolism and synthesis similar to in vivo conditions. Collectively, our findings demonstrate the ability of RTdi-MI cells to accumulate OA in intracellular lipid droplets and mirror in vivo steatosis conditions, offering a new tool for exploring fish intestinal lipid metabolism.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于研究脂质代谢和脂肪变性的鱼肠体外模型。
胆碱是目前公认的确保大西洋鲑脂质运输的必需营养素。缺乏胆碱会导致肠细胞中脂质过度积累,这种情况被称为脂肪变性。对鱼类脂质代谢和脂肪变性的了解仍然有限,这促使人们使用体外肠道模型进行更深入的探索。本研究旨在利用 RTdi-MI(一种源自虹鳟鱼远端肠道的新细胞系)创建体外脂肪变性模型。细胞在不同的时间点(24 小时、72 小时和 168 小时)暴露于不同浓度的油酸(OA)中。结果表明,OA 浓度的增加会促进细胞内脂滴的形成。定量脂质分析证实了 OA 的积累,这种积累随着暴露时间的延长和 OA 剂量的增加而加剧。此外,包括对照组在内的所有细胞都表现出脂肪酸代谢活性。光镜和荧光显微镜证实了这一结果。此外,RTdi-MI 细胞表达的参与脂质代谢和合成的基因与体内情况类似。总之,我们的研究结果表明 RTdii-MI 细胞能够在细胞内脂滴中积累 OA,并反映体内脂肪变性的情况,为探索鱼类肠道脂质代谢提供了一种新工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
2.10%
发文量
109
审稿时长
53 days
期刊介绍: BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.
期刊最新文献
RNA sequencing analysis reveals distinct gene expression patterns in infrapatellar fat pads of patients with end-stage osteoarthritis or rheumatoid arthritis. From LAL-D to MASLD: Insights into the role of LAL and Kupffer cells in liver inflammation and lipid metabolism A fish intestinal in vitro model for investigation of lipid metabolism and steatosis Hesperitin prevents non-alcoholic steatohepatitis by modulating mitochondrial dynamics and mitophagy via the AMPKα-Drp1/PINK1-Parkin signaling pathway Age-dependent changes in visceral adiposity are associated with decreased plasma levels of DHEA-S in sigma-1 receptor knockout male mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1