Production, characterization and biodistribution of therapeutic high-density lipoprotein-like nanoparticles reconstituted with or without histidine-tagged recombinant ApoA1

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular and cell biology of lipids Pub Date : 2025-02-20 DOI:10.1016/j.bbalip.2025.159606
Sarah Rosanaly , Marie Laurine Apalama , Matthieu Bringart , Pierre Giraud , Benoit Allard , Bryan Veeren , Olivier Meilhac , Joël Couprie , Philippe Rondeau
{"title":"Production, characterization and biodistribution of therapeutic high-density lipoprotein-like nanoparticles reconstituted with or without histidine-tagged recombinant ApoA1","authors":"Sarah Rosanaly ,&nbsp;Marie Laurine Apalama ,&nbsp;Matthieu Bringart ,&nbsp;Pierre Giraud ,&nbsp;Benoit Allard ,&nbsp;Bryan Veeren ,&nbsp;Olivier Meilhac ,&nbsp;Joël Couprie ,&nbsp;Philippe Rondeau","doi":"10.1016/j.bbalip.2025.159606","DOIUrl":null,"url":null,"abstract":"<div><div>High-density lipoproteins (HDLs) are known for their cardiovascular protection due to apolipoprotein A-1 (ApoA1), their primary protein. ApoA1 promotes cholesterol reverse transport and exhibits antioxidant and anti-inflammatory properties. Although increasing HDL levels has not consistently reduced cardiovascular mortality in clinical trials, reconstituted HDL (rHDL) nanoparticles containing ApoA1 show potential in treating acute inflammation, such as in ischemic stroke, sepsis, and even COVID-19. ApoA1 is commonly produced in bacteria due to its simplicity and potential therapeutic optimisation. Addition of a histidine tag to recombinant ApoA1 may improve purification, stability and therapeutic efficacy, although its functional impact remains a subject of debate. In this study, ApoA1 with a poly-histidine tag (His-rApoA1) was produced in a <em>clear coli</em> system for simplified purification, followed by an evaluation of the tag's effects on rHDL nanoparticle properties. rHDL and His-rHDL nanoparticles were prepared using the sodium cholate dialysis method, combining recombinant rApoA1 or His-rApoA1 with phosphatidylcholine at a 1:75 M ratio. Nuclear magnetic resonance confirmed that both forms of rApoA1 structurally resembled plasma ApoA1, whether lipid-free or in nanoparticle form. Dynamic light scattering and electron microscopy revealed nanoparticle sizes around 7 nm with native HDL-like morphology. Testing on endothelial cells (EA.hy926) showed rapid uptake of rHDL and His-rHDL while preserving cell viability. Additionally, both nanoparticles reduced interleukin-6 and ICAM-1 expression in cells, demonstrating their anti-inflammatory and protective effects, unaffected by the poly-histidine tag. Intravenous injection in mice shows homogeneous distribution of His-rHDL in the liver, lungs, and spleen, with no cytotoxicity, indicating potential use for treating inflammatory diseases.</div></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1870 3","pages":"Article 159606"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198125000149","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High-density lipoproteins (HDLs) are known for their cardiovascular protection due to apolipoprotein A-1 (ApoA1), their primary protein. ApoA1 promotes cholesterol reverse transport and exhibits antioxidant and anti-inflammatory properties. Although increasing HDL levels has not consistently reduced cardiovascular mortality in clinical trials, reconstituted HDL (rHDL) nanoparticles containing ApoA1 show potential in treating acute inflammation, such as in ischemic stroke, sepsis, and even COVID-19. ApoA1 is commonly produced in bacteria due to its simplicity and potential therapeutic optimisation. Addition of a histidine tag to recombinant ApoA1 may improve purification, stability and therapeutic efficacy, although its functional impact remains a subject of debate. In this study, ApoA1 with a poly-histidine tag (His-rApoA1) was produced in a clear coli system for simplified purification, followed by an evaluation of the tag's effects on rHDL nanoparticle properties. rHDL and His-rHDL nanoparticles were prepared using the sodium cholate dialysis method, combining recombinant rApoA1 or His-rApoA1 with phosphatidylcholine at a 1:75 M ratio. Nuclear magnetic resonance confirmed that both forms of rApoA1 structurally resembled plasma ApoA1, whether lipid-free or in nanoparticle form. Dynamic light scattering and electron microscopy revealed nanoparticle sizes around 7 nm with native HDL-like morphology. Testing on endothelial cells (EA.hy926) showed rapid uptake of rHDL and His-rHDL while preserving cell viability. Additionally, both nanoparticles reduced interleukin-6 and ICAM-1 expression in cells, demonstrating their anti-inflammatory and protective effects, unaffected by the poly-histidine tag. Intravenous injection in mice shows homogeneous distribution of His-rHDL in the liver, lungs, and spleen, with no cytotoxicity, indicating potential use for treating inflammatory diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
2.10%
发文量
109
审稿时长
53 days
期刊介绍: BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.
期刊最新文献
Walnut oil as a dietary intervention for atherosclerosis: Efficacy and mechanistic pathways Curcumin inhibits pancreatic steatosis in mice with a high-fat diet through the YAP/p53 pathway and confirmed through ultrasonic imaging Preventive effect of siphonaxanthin, a carotenoid from green algae, against diabetic nephropathy and lipid metabolism insufficiency in skeletal muscle Production, characterization and biodistribution of therapeutic high-density lipoprotein-like nanoparticles reconstituted with or without histidine-tagged recombinant ApoA1 Unveiling BCO2 function in macular pigment metabolism: Mitochondrial processing and expression in the primate retina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1