Behrouz Aghajanloo, Wil Losereewanich, Christopher J Pastras, David W Inglis
{"title":"Wicking pumps for microfluidics.","authors":"Behrouz Aghajanloo, Wil Losereewanich, Christopher J Pastras, David W Inglis","doi":"10.1063/5.0218030","DOIUrl":null,"url":null,"abstract":"<p><p>This review describes mechanisms for pulling fluids through microfluidic devices using hydrophilic structures at the downstream end of the device. These pumps enable microfluidic devices to get out of the lab and become point-of-care devices that can be used without external pumps. We briefly summarize prior related reviews on capillary, pumpless, and passively driven microfluidics then provide insights into the fundamental physics of wicking pumps. No prior reviews have focused on wicking pumps for microfluidics. Recent progress is divided into four categories: porous material pumps, hydrogel pumps, and 2.5D- and 3D-microfabricated pumps. We conclude with a discussion of challenges and opportunities in the field, which include achieving constant flow rate, priming issues, and integration of pumps with devices.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531334/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0218030","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This review describes mechanisms for pulling fluids through microfluidic devices using hydrophilic structures at the downstream end of the device. These pumps enable microfluidic devices to get out of the lab and become point-of-care devices that can be used without external pumps. We briefly summarize prior related reviews on capillary, pumpless, and passively driven microfluidics then provide insights into the fundamental physics of wicking pumps. No prior reviews have focused on wicking pumps for microfluidics. Recent progress is divided into four categories: porous material pumps, hydrogel pumps, and 2.5D- and 3D-microfabricated pumps. We conclude with a discussion of challenges and opportunities in the field, which include achieving constant flow rate, priming issues, and integration of pumps with devices.
这篇综述介绍了利用微流体设备下游端的亲水结构将流体吸入微流体设备的机制。这些泵能使微流体设备走出实验室,成为无需外部泵即可使用的护理点设备。我们简要总结了之前关于毛细管、无泵和被动驱动微流控技术的相关综述,然后深入介绍了吸芯泵的基本物理原理。之前的综述都没有关注微流体的吸附泵。最新进展分为四类:多孔材料泵、水凝胶泵以及 2.5D 和 3D 微制造泵。最后,我们讨论了该领域的挑战和机遇,包括实现恒定流速、填料问题以及泵与设备的集成。
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...