Maddison J Ledwidge, Jacquomo Monk, Suzanne J Mason, John P Y Arnould
{"title":"Using vessels of opportunity for determining important habitats of bottlenose dolphins in Port Phillip Bay, south-eastern Australia.","authors":"Maddison J Ledwidge, Jacquomo Monk, Suzanne J Mason, John P Y Arnould","doi":"10.7717/peerj.18400","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding species' critical habitat requirements is crucial for effective conservation and management. However, such information can be challenging to obtain, particularly for highly mobile, wide-ranging species such as cetaceans. In the absence of systematic surveys, alternative economically viable methods are needed, such as the use of data collected from platforms of opportunity, and modelling techniques to predict species distribution in un-surveyed areas. The present study used data collected by ecotourism and other vessels of opportunity to investigate important habitats of a small, poorly studied population of bottlenose dolphins in Port Phillip Bay, south-eastern Australia. Using 16 years of dolphin sighting location data, an ensemble habitat suitability model was built from which physical factors influencing dolphin distribution were identified. Results indicated that important habitats were those areas close to shipping channels and coastlines with these factors primarily influencing the variation in the likelihood of dolphin presence. The relatively good performance of the ensemble model suggests that simple presence-background data may be sufficient for predicting the species distribution where sighting data are limited. However, additional data from the center of Port Phillip Bay is required to further support this contention. Important habitat features identified in the study are likely to relate to favorable foraging conditions for dolphins as they are known to provide feeding, breeding, and spawning habitat for a diverse range of fish and cephalopod prey species. The results of the present study highlight the importance of affordable community-based data collection, such as ecotourism vessels, for obtaining information critical for effective management.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.18400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding species' critical habitat requirements is crucial for effective conservation and management. However, such information can be challenging to obtain, particularly for highly mobile, wide-ranging species such as cetaceans. In the absence of systematic surveys, alternative economically viable methods are needed, such as the use of data collected from platforms of opportunity, and modelling techniques to predict species distribution in un-surveyed areas. The present study used data collected by ecotourism and other vessels of opportunity to investigate important habitats of a small, poorly studied population of bottlenose dolphins in Port Phillip Bay, south-eastern Australia. Using 16 years of dolphin sighting location data, an ensemble habitat suitability model was built from which physical factors influencing dolphin distribution were identified. Results indicated that important habitats were those areas close to shipping channels and coastlines with these factors primarily influencing the variation in the likelihood of dolphin presence. The relatively good performance of the ensemble model suggests that simple presence-background data may be sufficient for predicting the species distribution where sighting data are limited. However, additional data from the center of Port Phillip Bay is required to further support this contention. Important habitat features identified in the study are likely to relate to favorable foraging conditions for dolphins as they are known to provide feeding, breeding, and spawning habitat for a diverse range of fish and cephalopod prey species. The results of the present study highlight the importance of affordable community-based data collection, such as ecotourism vessels, for obtaining information critical for effective management.