Early prediction of radiotherapy outcomes in pharyngeal cancer using deep learning on baseline [18F]Fluorodeoxyglucose positron emission Tomography/Computed tomography

IF 3.2 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Radiology Pub Date : 2024-10-29 DOI:10.1016/j.ejrad.2024.111811
Kuo-Chen Wu , Shang-Wen Chen , Ruey-Feng Chang , Te-Chun Hsieh , Kuo-Yang Yen , Chao-Jen Chang , Zong-Kai Hsu , Yi-Chun Yeh , Yuan-Yen Chang , Chia-Hung Kao
{"title":"Early prediction of radiotherapy outcomes in pharyngeal cancer using deep learning on baseline [18F]Fluorodeoxyglucose positron emission Tomography/Computed tomography","authors":"Kuo-Chen Wu ,&nbsp;Shang-Wen Chen ,&nbsp;Ruey-Feng Chang ,&nbsp;Te-Chun Hsieh ,&nbsp;Kuo-Yang Yen ,&nbsp;Chao-Jen Chang ,&nbsp;Zong-Kai Hsu ,&nbsp;Yi-Chun Yeh ,&nbsp;Yuan-Yen Chang ,&nbsp;Chia-Hung Kao","doi":"10.1016/j.ejrad.2024.111811","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>This study aimed to develop an integrated segmentation-free deep learning (DL) framework to predict multiple aspects of radiotherapy outcome in pharyngeal cancer patients by analyzing pretreatment 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET/CT).</div></div><div><h3>Methods</h3><div>We utilized baseline 18F-FDG-PET/CT scans from patients newly diagnosed with oropharyngeal or hypopharyngeal cancer. The study cohort comprised 162 patients for training and 32 for validation, all of whom completed definitive chemoradiotherapy or radiotherapy for organ-preservation. Following image augmentation, fused PET and CT images were used to train three distinct DL models. An ensemble voting classifier was then employed to predict local recurrence (LR), neck lymph node relapse (NR), and distant metastases (DM). Model performance was evaluated using receiver operating characteristic curve analysis.</div></div><div><h3>Results</h3><div>With a median follow-up of 36 months, the training cohort experienced, LR in 45 (27.8 %), NR in 32 (19.8 %), and DM in 21 (13.0 %) patients. By optimizing single models and finalizing with an ensemble voting classifier, the area under the curve for the occurrence of LR, NR, and DM was 0.850, 0.878, and 0.893, whereas the accuracy for the three endpoints were 87.5 %, 68.8 %, and 78.1 %, respectively.</div></div><div><h3>Conclusions</h3><div>By utilizing baseline 18F-FDG-PET/CT, our proposed DL models can provide a supplemental prediction for various therapeutic outcome in patients with pharyngeal cancer undergoing radiotherapy-based treatment. The accuracy for NR and DM predictions requires further optimization through additional technological breakthrough or combing clinical parameters. External validation is an important future step to confirm the model’s generalizability and clinical utility.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"181 ","pages":"Article 111811"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X24005278","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

This study aimed to develop an integrated segmentation-free deep learning (DL) framework to predict multiple aspects of radiotherapy outcome in pharyngeal cancer patients by analyzing pretreatment 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET/CT).

Methods

We utilized baseline 18F-FDG-PET/CT scans from patients newly diagnosed with oropharyngeal or hypopharyngeal cancer. The study cohort comprised 162 patients for training and 32 for validation, all of whom completed definitive chemoradiotherapy or radiotherapy for organ-preservation. Following image augmentation, fused PET and CT images were used to train three distinct DL models. An ensemble voting classifier was then employed to predict local recurrence (LR), neck lymph node relapse (NR), and distant metastases (DM). Model performance was evaluated using receiver operating characteristic curve analysis.

Results

With a median follow-up of 36 months, the training cohort experienced, LR in 45 (27.8 %), NR in 32 (19.8 %), and DM in 21 (13.0 %) patients. By optimizing single models and finalizing with an ensemble voting classifier, the area under the curve for the occurrence of LR, NR, and DM was 0.850, 0.878, and 0.893, whereas the accuracy for the three endpoints were 87.5 %, 68.8 %, and 78.1 %, respectively.

Conclusions

By utilizing baseline 18F-FDG-PET/CT, our proposed DL models can provide a supplemental prediction for various therapeutic outcome in patients with pharyngeal cancer undergoing radiotherapy-based treatment. The accuracy for NR and DM predictions requires further optimization through additional technological breakthrough or combing clinical parameters. External validation is an important future step to confirm the model’s generalizability and clinical utility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用对基线[18F]氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描的深度学习,早期预测咽癌的放疗效果。
研究目的本研究旨在开发一种集成的无分割深度学习(DL)框架,通过分析治疗前的 18F- 氟脱氧葡萄糖(18F-FDG)正电子发射断层扫描-计算机断层扫描(PET/CT),预测咽癌患者放疗结果的多个方面:我们利用了新诊断为口咽癌或下咽癌患者的基线18F-FDG-PET/CT扫描结果。研究队列包括162名训练患者和32名验证患者,他们都完成了明确的化学放疗或器官保留放疗。图像增强后,融合 PET 和 CT 图像被用于训练三种不同的 DL 模型。然后采用集合投票分类器预测局部复发(LR)、颈部淋巴结复发(NR)和远处转移(DM)。利用接收器操作特征曲线分析评估了模型的性能:中位随访时间为 36 个月,训练队列中有 45 例(27.8%)患者出现局部复发,32 例(19.8%)患者出现颈部淋巴结复发,21 例(13.0%)患者出现远处转移。通过优化单一模型并最终使用集合投票分类器,LR、NR 和 DM 发生率的曲线下面积分别为 0.850、0.878 和 0.893,而三个终点的准确率分别为 87.5%、68.8% 和 78.1%:通过利用基线18F-FDG-PET/CT,我们提出的DL模型可以对接受放疗的咽癌患者的各种治疗结果进行补充预测。NR和DM预测的准确性需要通过更多的技术突破或结合临床参数来进一步优化。外部验证是未来确认模型通用性和临床实用性的重要步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
3.00%
发文量
398
审稿时长
42 days
期刊介绍: European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field. Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.
期刊最新文献
Multilingual feasibility of GPT-4o for automated Voice-to-Text CT and MRI report transcription. Predicting functional outcome after open lumbar fusion surgery: A retrospective multicenter cohort study ECG, clinical and novel CT-imaging predictors of necessary pacemaker implantation after transfemoral aortic valve replacement In-vivo cerebral artery pulsation assessment with Dynamic computed tomography angiography Diagnostic performance of Photon-counting CT angiography in peripheral artery disease compared to DSA as gold standard
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1