Editorial: Protein post-translational modifications in the nervous system: from development to disease and ageing.

IF 3.5 3区 医学 Q2 NEUROSCIENCES Frontiers in Molecular Neuroscience Pub Date : 2024-10-18 eCollection Date: 2024-01-01 DOI:10.3389/fnmol.2024.1501719
Beatriz Alvarez, Judit Symmank, Geraldine Zimmer-Bensch, Miguel Diaz-Hernandez, Patricia Franzka
{"title":"Editorial: Protein post-translational modifications in the nervous system: from development to disease and ageing.","authors":"Beatriz Alvarez, Judit Symmank, Geraldine Zimmer-Bensch, Miguel Diaz-Hernandez, Patricia Franzka","doi":"10.3389/fnmol.2024.1501719","DOIUrl":null,"url":null,"abstract":"<p><p>PTMs are crucial for biological processes contributing to healthy organ function. Protein post-translational modifications (PTMs), such as phosphorylation (P), acetylation (Ac), SUMOylation (SUMO), S-nitrosylation (Nitro), ubiquitination (Ub) and glycosylation (Glyco), affect a wide range of cellular and biological functions as depicted in this cartoon. Perturbations lead to severe consequences for the normal function of the brain and other organs, such as muscle. Created in BioRender. Hübner (2024) BioRender.com/j49w898.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527776/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2024.1501719","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

PTMs are crucial for biological processes contributing to healthy organ function. Protein post-translational modifications (PTMs), such as phosphorylation (P), acetylation (Ac), SUMOylation (SUMO), S-nitrosylation (Nitro), ubiquitination (Ub) and glycosylation (Glyco), affect a wide range of cellular and biological functions as depicted in this cartoon. Perturbations lead to severe consequences for the normal function of the brain and other organs, such as muscle. Created in BioRender. Hübner (2024) BioRender.com/j49w898.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社论:神经系统中的蛋白质翻译后修饰:从发育到疾病和衰老。
蛋白质翻译后修饰(PTMs)对促进器官功能健康的生物过程至关重要。蛋白质翻译后修饰(PTMs),如磷酸化(P)、乙酰化(Ac)、SUMO 化(SUMO)、S-亚硝基化(Nitro)、泛素化(Ub)和糖基化(Glyco),影响着广泛的细胞和生物功能,如本漫画所示。干扰会严重影响大脑和肌肉等其他器官的正常功能。用 BioRender 制作。Hübner (2024) BioRender.com/j49w898。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
2.10%
发文量
669
审稿时长
14 weeks
期刊介绍: Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.
期刊最新文献
Liquid-liquid phase separation and conformational strains of α-Synuclein: implications for Parkinson's disease pathogenesis. Follicle-stimulating hormone induces depression-like phenotype by affecting synaptic function. Editorial: Protein post-translational modifications in the nervous system: from development to disease and ageing. Editorial: ATF3: a crucial stress-responsive gene of glia and neurons in CNS. Ziconotide and psychosis: from a case report to a scoping review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1