首页 > 最新文献

Frontiers in Molecular Neuroscience最新文献

英文 中文
Uncovering novel KCC2 regulatory motifs through a comprehensive transposon-based mutant library.
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-15 eCollection Date: 2024-01-01 DOI: 10.3389/fnmol.2024.1505722
Pavel Uvarov, Satoshi Fudo, Cem Karakus, Andrey Golubtsov, Federico Rotondo, Tatiana Sukhanova, Shetal Soni, Coralie Di Scala, Tommi Kajander, Claudio Rivera, Anastasia Ludwig

Introduction: The neuron-specific K-Cl cotransporter KCC2 maintains low intracellular chloride levels, which are crucial for fast GABAergic and glycinergic neurotransmission. KCC2 also plays a pivotal role in the development of excitatory glutamatergic neurotransmission by promoting dendritic spine maturation. The cytoplasmic C-terminal domain (KCC2-CTD) plays a critical regulatory role in the molecular mechanisms controlling the cotransporter activity through dimerization, phosphorylation, and protein interaction.

Methods: To identify novel CTD regulatory motifs, we used the Mu transposon-based mutagenesis system to generate a library of KCC2 mutants with 5 amino acid insertions randomly distributed within the KCC2-CTD. We determined the insertion positions in 288 mutants by restriction analysis and selected clones with a single insertion site outside known KCC2 regulatory motifs. We analyzed the subcellular distribution of KCC2-CTD mutants in cultured cortical neurons using immunocytochemistry and selected ten mutants with ectopic expression patterns for detailed characterization.

Results: A fluorescent Cl--transport assay in HEK293 cells revealed mutants with both reduced and enhanced Cl--extrusion activity, which overall correlated with their glycosylation patterns. Live-cell immunostaining analysis of plasma membrane expression of KCC2-CTD mutants in cultured cortical neurons corroborated the glycosylation data. Furthermore, the somatodendritic chloride gradient in neurons transfected with the KCC2-CTD mutants correlated with their Cl--extrusion activity in HEK293 cells. Gain- and loss-of-function mutant positions were analyzed using available KCC2 cryo-EM structures.

Discussion: Two groups of mutants were identified based on 3D structural analysis. The first group, located near the interface of transmembrane and cytoplasmic domains, may affect interactions with the N-terminal inhibitory peptide regulating KCC2 activity. The second group, situated on the external surface of the cytoplasmic domain, may disrupt interactions with regulatory proteins. Analyzing CTD mutations that modulate KCC2 activity enhances our understanding of its function and is essential for developing novel anti-seizure therapies.

{"title":"Uncovering novel KCC2 regulatory motifs through a comprehensive transposon-based mutant library.","authors":"Pavel Uvarov, Satoshi Fudo, Cem Karakus, Andrey Golubtsov, Federico Rotondo, Tatiana Sukhanova, Shetal Soni, Coralie Di Scala, Tommi Kajander, Claudio Rivera, Anastasia Ludwig","doi":"10.3389/fnmol.2024.1505722","DOIUrl":"https://doi.org/10.3389/fnmol.2024.1505722","url":null,"abstract":"<p><strong>Introduction: </strong>The neuron-specific K-Cl cotransporter KCC2 maintains low intracellular chloride levels, which are crucial for fast GABAergic and glycinergic neurotransmission. KCC2 also plays a pivotal role in the development of excitatory glutamatergic neurotransmission by promoting dendritic spine maturation. The cytoplasmic C-terminal domain (KCC2-CTD) plays a critical regulatory role in the molecular mechanisms controlling the cotransporter activity through dimerization, phosphorylation, and protein interaction.</p><p><strong>Methods: </strong>To identify novel CTD regulatory motifs, we used the Mu transposon-based mutagenesis system to generate a library of KCC2 mutants with 5 amino acid insertions randomly distributed within the KCC2-CTD. We determined the insertion positions in 288 mutants by restriction analysis and selected clones with a single insertion site outside known KCC2 regulatory motifs. We analyzed the subcellular distribution of KCC2-CTD mutants in cultured cortical neurons using immunocytochemistry and selected ten mutants with ectopic expression patterns for detailed characterization.</p><p><strong>Results: </strong>A fluorescent Cl<sup>-</sup>-transport assay in HEK293 cells revealed mutants with both reduced and enhanced Cl<sup>-</sup>-extrusion activity, which overall correlated with their glycosylation patterns. Live-cell immunostaining analysis of plasma membrane expression of KCC2-CTD mutants in cultured cortical neurons corroborated the glycosylation data. Furthermore, the somatodendritic chloride gradient in neurons transfected with the KCC2-CTD mutants correlated with their Cl<sup>-</sup>-extrusion activity in HEK293 cells. Gain- and loss-of-function mutant positions were analyzed using available KCC2 cryo-EM structures.</p><p><strong>Discussion: </strong>Two groups of mutants were identified based on 3D structural analysis. The first group, located near the interface of transmembrane and cytoplasmic domains, may affect interactions with the N-terminal inhibitory peptide regulating KCC2 activity. The second group, situated on the external surface of the cytoplasmic domain, may disrupt interactions with regulatory proteins. Analyzing CTD mutations that modulate KCC2 activity enhances our understanding of its function and is essential for developing novel anti-seizure therapies.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"17 ","pages":"1505722"},"PeriodicalIF":3.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774852/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel strategies targeting mitochondria-lysosome contact sites for the treatment of neurological diseases.
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-14 eCollection Date: 2024-01-01 DOI: 10.3389/fnmol.2024.1527013
Yinyin Xie, Wenlin Sun, Aoya Han, Xinru Zhou, Shijie Zhang, Changchang Shen, Yi Xie, Cui Wang, Nanchang Xie

Mitochondria and lysosomes are critical for neuronal homeostasis, as highlighted by their dysfunction in various neurological diseases. Recent studies have identified dynamic membrane contact sites between mitochondria and lysosomes, independent of mitophagy and the lysosomal degradation of mitochondrial-derived vesicles (MDVs), allowing bidirectional crosstalk between these cell compartments, the dynamic regulation of organelle networks, and substance exchanges. Emerging evidence suggests that abnormalities in mitochondria-lysosome contact sites (MLCSs) contribute to neurological diseases, including Parkinson's disease, Charcot-Marie-Tooth (CMT) disease, lysosomal storage diseases, and epilepsy. This article reviews recent research advances regarding the tethering processes, regulation, and function of MLCSs and their role in neurological diseases.

{"title":"Novel strategies targeting mitochondria-lysosome contact sites for the treatment of neurological diseases.","authors":"Yinyin Xie, Wenlin Sun, Aoya Han, Xinru Zhou, Shijie Zhang, Changchang Shen, Yi Xie, Cui Wang, Nanchang Xie","doi":"10.3389/fnmol.2024.1527013","DOIUrl":"10.3389/fnmol.2024.1527013","url":null,"abstract":"<p><p>Mitochondria and lysosomes are critical for neuronal homeostasis, as highlighted by their dysfunction in various neurological diseases. Recent studies have identified dynamic membrane contact sites between mitochondria and lysosomes, independent of mitophagy and the lysosomal degradation of mitochondrial-derived vesicles (MDVs), allowing bidirectional crosstalk between these cell compartments, the dynamic regulation of organelle networks, and substance exchanges. Emerging evidence suggests that abnormalities in mitochondria-lysosome contact sites (MLCSs) contribute to neurological diseases, including Parkinson's disease, Charcot-Marie-Tooth (CMT) disease, lysosomal storage diseases, and epilepsy. This article reviews recent research advances regarding the tethering processes, regulation, and function of MLCSs and their role in neurological diseases.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"17 ","pages":"1527013"},"PeriodicalIF":3.5,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772484/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Oxytosis/ferroptosis: unraveling the mechanisms and its multifaceted role in neurodegenerative diseases.
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-13 eCollection Date: 2024-01-01 DOI: 10.3389/fnmol.2024.1547301
Nawab John Dar, David Soriano Castell, Shahnawaz Ali Bhat, Pamela Maher
{"title":"Editorial: Oxytosis/ferroptosis: unraveling the mechanisms and its multifaceted role in neurodegenerative diseases.","authors":"Nawab John Dar, David Soriano Castell, Shahnawaz Ali Bhat, Pamela Maher","doi":"10.3389/fnmol.2024.1547301","DOIUrl":"https://doi.org/10.3389/fnmol.2024.1547301","url":null,"abstract":"","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"17 ","pages":"1547301"},"PeriodicalIF":3.5,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770006/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The current state of knowledge on the role of NKG2D ligands in multiple sclerosis and other autoimmune diseases. 关于 NKG2D 配体在多发性硬化症和其他自身免疫性疾病中的作用的现有知识。
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-10 eCollection Date: 2024-01-01 DOI: 10.3389/fnmol.2024.1493308
Aleksandra Pogoda-Wesołowska, Nina Sługocka, Agnieszka Synowiec, Klaudia Brodaczewska, Marcin Mejer-Zahorowski, Maciej Ziękiewicz, Wojciech Szypowski, Piotr Szymański, Adam Stępień

Multiple sclerosis (MS) is a chronic central nervous system (CNS) disease with demyelinating inflammatory characteristics. It is the most common nontraumatic and disabling disease affecting young adults. The incidence and prevalence of MS have been increasing. However, its exact cause remains unclear. The main tests used to support the diagnosis are magnetic resonance imaging (MRI) examination and cerebrospinal fluid (CSF) analysis. Nonetheless, to date, no sensitive or specific marker has been identified for the detection of the disease at its initial stage. In recent years, researchers have focused on the fact that the number of natural killer cell group 2 member D (NKG2D) family of C-type lectin-like receptor + (NKG2D+) T cells in the peripheral blood, CSF, and brain tissue has been shown to be higher in patients with MS than in controls. The activating receptor belonging to the NKG2D is stimulated by specific ligands: in humans these are major histocompatibility complex (MHC) class I polypeptide-related sequence A (MICA) and MHC class I polypeptide-related sequence B (MICB) proteins and UL16 binding 1-6 proteins (ULBP1-6). Under physiological conditions, the aforementioned ligands are expressed at low or undetectable levels but can be induced in response to stress factors. NKG2D ligands (NKG2DLs) are involved in epigenetic regulation of their expression. To date, studies in cell cultures, animal models, and brain tissues have revealed elevated expression of MICA/B, ULPB4, and its mouse homolog murine UL16 binding protein-like transcript (MULT1), in oligodendrocytes and astrocytes from patients with MS. Furthermore, soluble forms of NKG2DLs were elevated in the plasma and CSF of patients with MS compared to controls. In this review, we aim to describe the role of NKG2D and NKG2DLs, and their interactions in the pathogenesis of MS, as well as in other autoimmune diseases such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), and celiac disease (CeD). We also assess the potential of these proteins as diagnostic markers and consider future perspectives for targeting NKG2D ligands and their pathways as therapeutic targets in MS.

{"title":"The current state of knowledge on the role of NKG2D ligands in multiple sclerosis and other autoimmune diseases.","authors":"Aleksandra Pogoda-Wesołowska, Nina Sługocka, Agnieszka Synowiec, Klaudia Brodaczewska, Marcin Mejer-Zahorowski, Maciej Ziękiewicz, Wojciech Szypowski, Piotr Szymański, Adam Stępień","doi":"10.3389/fnmol.2024.1493308","DOIUrl":"10.3389/fnmol.2024.1493308","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a chronic central nervous system (CNS) disease with demyelinating inflammatory characteristics. It is the most common nontraumatic and disabling disease affecting young adults. The incidence and prevalence of MS have been increasing. However, its exact cause remains unclear. The main tests used to support the diagnosis are magnetic resonance imaging (MRI) examination and cerebrospinal fluid (CSF) analysis. Nonetheless, to date, no sensitive or specific marker has been identified for the detection of the disease at its initial stage. In recent years, researchers have focused on the fact that the number of natural killer cell group 2 member D (NKG2D) family of C-type lectin-like receptor + (NKG2D+) T cells in the peripheral blood, CSF, and brain tissue has been shown to be higher in patients with MS than in controls. The activating receptor belonging to the NKG2D is stimulated by specific ligands: in humans these are major histocompatibility complex (MHC) class I polypeptide-related sequence A (MICA) and MHC class I polypeptide-related sequence B (MICB) proteins and UL16 binding 1-6 proteins (ULBP1-6). Under physiological conditions, the aforementioned ligands are expressed at low or undetectable levels but can be induced in response to stress factors. NKG2D ligands (NKG2DLs) are involved in epigenetic regulation of their expression. To date, studies in cell cultures, animal models, and brain tissues have revealed elevated expression of MICA/B, ULPB4, and its mouse homolog murine UL16 binding protein-like transcript (MULT1), in oligodendrocytes and astrocytes from patients with MS. Furthermore, soluble forms of NKG2DLs were elevated in the plasma and CSF of patients with MS compared to controls. In this review, we aim to describe the role of NKG2D and NKG2DLs, and their interactions in the pathogenesis of MS, as well as in other autoimmune diseases such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), and celiac disease (CeD). We also assess the potential of these proteins as diagnostic markers and consider future perspectives for targeting NKG2D ligands and their pathways as therapeutic targets in MS.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"17 ","pages":"1493308"},"PeriodicalIF":3.5,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758245/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143046374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurotherapeutic impact of vanillic acid and ibudilast on the cuprizone model of multiple sclerosis. 香草酸和伊布司特对多发性硬化症铜绿素模型的神经治疗影响
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-10 eCollection Date: 2024-01-01 DOI: 10.3389/fnmol.2024.1503396
Rasha M Alderbi, Mohammad Z Alam, Badrah S Alghamdi, Hadeil M Alsufiani, Gamal S Abd El-Aziz, Ulfat M Omar, Maryam A Al-Ghamdi

Multiple sclerosis (MS) affects 2.8 million people worldwide. Although the cause is unknown, various risk factors might be involved. MS involves the immune system attacking the central nervous system's myelin sheath, leading to neuron damage. This study used a cuprizone (CPZ)-intoxicated mouse model to simulate MS's demyelination/remyelination process. It evaluated the molecular, histological, and behavioral effects of vanillic acid (VA), a natural phenolic acid, alone and with Ibudilast (IBD), a clinically tested MS medication. Mice were divided into a control group (regular chow) and a CPZ group (0.3% cuprizone chow for 5 consecutive weeks). During remyelination, the CPZ group was split into four groups: no therapy, 10 mg/kg of IBD, 30 mg/kg of VA, and combined, each treated for 4 weeks. Behavioral, biochemical, molecular, and histopathological tests occurred in the 5th week (demyelination), 7th (early remyelination), and 9th (late remyelination). Cognitive assessments were at weeks 5 and 9. VA enhanced motor, coordination, and cognitive impairments in CPZ-intoxicated mice and improved histopathological, molecular, and biochemical features during early remyelination. IBD improved behavioral abnormalities across all tests, but combined therapy showed no significant difference from single therapies. Further investigations are necessary to understand VA's mechanisms and potential as an MS treatment.

{"title":"Neurotherapeutic impact of vanillic acid and ibudilast on the cuprizone model of multiple sclerosis.","authors":"Rasha M Alderbi, Mohammad Z Alam, Badrah S Alghamdi, Hadeil M Alsufiani, Gamal S Abd El-Aziz, Ulfat M Omar, Maryam A Al-Ghamdi","doi":"10.3389/fnmol.2024.1503396","DOIUrl":"10.3389/fnmol.2024.1503396","url":null,"abstract":"<p><p>Multiple sclerosis (MS) affects 2.8 million people worldwide. Although the cause is unknown, various risk factors might be involved. MS involves the immune system attacking the central nervous system's myelin sheath, leading to neuron damage. This study used a cuprizone (CPZ)-intoxicated mouse model to simulate MS's demyelination/remyelination process. It evaluated the molecular, histological, and behavioral effects of vanillic acid (VA), a natural phenolic acid, alone and with Ibudilast (IBD), a clinically tested MS medication. Mice were divided into a control group (regular chow) and a CPZ group (0.3% cuprizone chow for 5 consecutive weeks). During remyelination, the CPZ group was split into four groups: no therapy, 10 mg/kg of IBD, 30 mg/kg of VA, and combined, each treated for 4 weeks. Behavioral, biochemical, molecular, and histopathological tests occurred in the 5<sup>th</sup> week (demyelination), 7<sup>th</sup> (early remyelination), and 9<sup>th</sup> (late remyelination). Cognitive assessments were at weeks 5 and 9. VA enhanced motor, coordination, and cognitive impairments in CPZ-intoxicated mice and improved histopathological, molecular, and biochemical features during early remyelination. IBD improved behavioral abnormalities across all tests, but combined therapy showed no significant difference from single therapies. Further investigations are necessary to understand VA's mechanisms and potential as an MS treatment.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"17 ","pages":"1503396"},"PeriodicalIF":3.5,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760597/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143046359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serum metabolomic signatures of patients with rare neurogenetic diseases: an insight into potential biomarkers and treatment targets.
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-10 eCollection Date: 2024-01-01 DOI: 10.3389/fnmol.2024.1482999
Nalaka Wijekoon, Lakmal Gonawala, Pyara Ratnayake, Darshana Sirisena, Harsha Gunasekara, Athula Dissanayake, Dhammika Amaratunga, Harry W M Steinbusch, Yetrib Hathout, Eric P Hoffman, Ashwin Dalal, Chandra Mohan, K Ranil D de Silva

Introduction: To further advance our understanding of Muscular Dystrophies (MDs) and Spinocerebellar Ataxias (SCAs), it is necessary to identify the biological patterns associated with disease pathology. Although progress has been made in the fields of genetics and transcriptomics, there is a need for proteomics and metabolomics studies. The present study aimed to be the first to document serum metabolic signatures of MDs (DMD, BMD, and LGMD 2A) SCAs (SCA 1-3), from a South Asian perspective.

Methods: A total of 28 patients (SCA 1-10, SCA 2-2, SCA 3-2, DMD-10, BMD-2, LGMD-2) and eight controls (aged 8-65 years) were included. Metabolomic analysis was performed by Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS), with support from the Houston Omics Collaborative.

Results and discussion: Amino acid metabolism was the primary altered super pathway in DMD followed by carbohydrate metabolism and lipid metabolism. In contrast, BMD and LGMD 2A exhibited a more prominent alteration in lipid metabolism followed by amino acid metabolism. In SCAs, primarily lipid, amino acid, peptide, nucleotide, and xenobiotics pathways are affected. Our findings offer new insights into the variance of metabolite levels in MD and SCA, with substantial implications for pathology, drug development, therapeutic targets and clinical management. Intriguingly, this study identified two novel metabolites associated with SCA. This pilot cross-sectional study warrants further research involving larger groups of participants, to validate our findings.

{"title":"Serum metabolomic signatures of patients with rare neurogenetic diseases: an insight into potential biomarkers and treatment targets.","authors":"Nalaka Wijekoon, Lakmal Gonawala, Pyara Ratnayake, Darshana Sirisena, Harsha Gunasekara, Athula Dissanayake, Dhammika Amaratunga, Harry W M Steinbusch, Yetrib Hathout, Eric P Hoffman, Ashwin Dalal, Chandra Mohan, K Ranil D de Silva","doi":"10.3389/fnmol.2024.1482999","DOIUrl":"10.3389/fnmol.2024.1482999","url":null,"abstract":"<p><strong>Introduction: </strong>To further advance our understanding of Muscular Dystrophies (MDs) and Spinocerebellar Ataxias (SCAs), it is necessary to identify the biological patterns associated with disease pathology. Although progress has been made in the fields of genetics and transcriptomics, there is a need for proteomics and metabolomics studies. The present study aimed to be the first to document serum metabolic signatures of MDs (DMD, BMD, and LGMD 2A) SCAs (SCA 1-3), from a South Asian perspective.</p><p><strong>Methods: </strong>A total of 28 patients (SCA 1-10, SCA 2-2, SCA 3-2, DMD-10, BMD-2, LGMD-2) and eight controls (aged 8-65 years) were included. Metabolomic analysis was performed by Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS), with support from the Houston Omics Collaborative.</p><p><strong>Results and discussion: </strong>Amino acid metabolism was the primary altered super pathway in DMD followed by carbohydrate metabolism and lipid metabolism. In contrast, BMD and LGMD 2A exhibited a more prominent alteration in lipid metabolism followed by amino acid metabolism. In SCAs, primarily lipid, amino acid, peptide, nucleotide, and xenobiotics pathways are affected. Our findings offer new insights into the variance of metabolite levels in MD and SCA, with substantial implications for pathology, drug development, therapeutic targets and clinical management. Intriguingly, this study identified two novel metabolites associated with SCA. This pilot cross-sectional study warrants further research involving larger groups of participants, to validate our findings.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"17 ","pages":"1482999"},"PeriodicalIF":3.5,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143046361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight into interplay between PANoptosis and autophagy: novel therapeutics in ischemic stroke.
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-08 eCollection Date: 2024-01-01 DOI: 10.3389/fnmol.2024.1482015
He-Yan Tian, Yun-Xing Lei, Jing-Tao Zhou, Long-Jun Liu, Tong Yang, Yue Zhou, Jin-Wen Ge, Chen Xu, Zhi-Gang Mei

PANoptosis is a novelly defined mode of programmed cell death that involves the activation of multiple cellular death pathways, including pyroptosis, apoptosis, and necroptosis, triggering robust inflammatory reactions. Autophagy is a crucial cellular process that maintains cellular homeostasis and protects cells from various stresses. PANoptosis and autophagy, both vital players in the intricate pathological progression of ischemic stroke (IS), a brain ailment governed by intricate cell death cascades, have garnered attention in recent years for their potential interplay. While mounting evidence hints at a crosstalk between these two processes in IS, the underlying mechanisms remain elusive. Therefore, this review delves into and dissects the intricate mechanisms that underpin the intersection of PANoptosis and autophagy in this devastating condition. In conclusion, the crosstalk between PANoptosis and autophagy in IS presents a promising target for the development of novel stroke therapies. Understanding the interplay between these two pathways offers a much-needed insight into the underlying mechanisms of IS and opens the possibility for new therapeutic strategies.

{"title":"Insight into interplay between PANoptosis and autophagy: novel therapeutics in ischemic stroke.","authors":"He-Yan Tian, Yun-Xing Lei, Jing-Tao Zhou, Long-Jun Liu, Tong Yang, Yue Zhou, Jin-Wen Ge, Chen Xu, Zhi-Gang Mei","doi":"10.3389/fnmol.2024.1482015","DOIUrl":"10.3389/fnmol.2024.1482015","url":null,"abstract":"<p><p>PANoptosis is a novelly defined mode of programmed cell death that involves the activation of multiple cellular death pathways, including pyroptosis, apoptosis, and necroptosis, triggering robust inflammatory reactions. Autophagy is a crucial cellular process that maintains cellular homeostasis and protects cells from various stresses. PANoptosis and autophagy, both vital players in the intricate pathological progression of ischemic stroke (IS), a brain ailment governed by intricate cell death cascades, have garnered attention in recent years for their potential interplay. While mounting evidence hints at a crosstalk between these two processes in IS, the underlying mechanisms remain elusive. Therefore, this review delves into and dissects the intricate mechanisms that underpin the intersection of PANoptosis and autophagy in this devastating condition. In conclusion, the crosstalk between PANoptosis and autophagy in IS presents a promising target for the development of novel stroke therapies. Understanding the interplay between these two pathways offers a much-needed insight into the underlying mechanisms of IS and opens the possibility for new therapeutic strategies.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"17 ","pages":"1482015"},"PeriodicalIF":3.5,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Urine miRNA signature as potential non-invasive diagnostic biomarker for Hirschsprung's disease.
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-08 eCollection Date: 2024-01-01 DOI: 10.3389/fnmol.2024.1504424
Abhijit Sreepada, Rasul Khasanov, Enas Zoheer Elkrewi, Carolina de la Torre, Judith Felcht, Ahmad A Al Abdulqader, Richard Martel, Nicolás Andrés Hoyos-Celis, Michael Boettcher, Lucas M Wessel, Karl-Herbert Schäfer, María Ángeles Tapia-Laliena

Hirschsprung's disease (HSCR) is characterized by congenital absence of ganglion cells in the gastrointestinal tract, which leads to impaired defecation, constipation and intestinal obstruction. The current diagnosis of HSCR is based on Rectal Suction Biopsies (RSBs), which could be complex in newborns. Occasionally, there is a delay in diagnosis that can increase the risk of clinical complications. Consequently, there is room for new non-invasive diagnostic methods that are objective, more logistically feasible and also deliver a far earlier base for a potential surgical intervention. In recent years, microRNA (miRNA) has come into the focus as a relevant early marker that could provide more insights into the etiology and progression of diseases. Therefore, in the search of a non-invasive HSCR biomarker, we analyzed miRNA expression in urine samples of HSCR patients. Results from 5 HSCR patients using microarrays, revealed hsa-miR-378 h, hsa-miR-210-5p, hsa-miR-6876-3p, hsa-miR-634 and hsa-miR-6883-3p as the most upregulated miRNAs; while hsa-miR-4443, hsa-miR-22-3p, hsa-miR-4732-5p, hsa-miR-3187-5p, and hsa-miR-371b-5p where the most downregulated miRNAs. Further search in miRNAwalk and miRDB databases showed that certainly most of these dysregulated miRNAs identified target HSCR associated genes, such as RET, GDNF, BDNF, EDN3, EDNRB, ERBB, NRG1, SOX10; and other genes implied in neuronal migration and neurogenesis. Finally, we could also validate some of these miRNA changes in HSCR urine by RT-qPCR. Altogether, our analyzed HSCR cohort presents a dysregulated miRNA expression presents that can be detected in urine. Our findings open the possibility of using specific urine miRNA signatures as non-invasive HSCR diagnosis method in the future.

{"title":"Urine miRNA signature as potential non-invasive diagnostic biomarker for Hirschsprung's disease.","authors":"Abhijit Sreepada, Rasul Khasanov, Enas Zoheer Elkrewi, Carolina de la Torre, Judith Felcht, Ahmad A Al Abdulqader, Richard Martel, Nicolás Andrés Hoyos-Celis, Michael Boettcher, Lucas M Wessel, Karl-Herbert Schäfer, María Ángeles Tapia-Laliena","doi":"10.3389/fnmol.2024.1504424","DOIUrl":"10.3389/fnmol.2024.1504424","url":null,"abstract":"<p><p>Hirschsprung's disease (HSCR) is characterized by congenital absence of ganglion cells in the gastrointestinal tract, which leads to impaired defecation, constipation and intestinal obstruction. The current diagnosis of HSCR is based on Rectal Suction Biopsies (RSBs), which could be complex in newborns. Occasionally, there is a delay in diagnosis that can increase the risk of clinical complications. Consequently, there is room for new non-invasive diagnostic methods that are objective, more logistically feasible and also deliver a far earlier base for a potential surgical intervention. In recent years, microRNA (miRNA) has come into the focus as a relevant early marker that could provide more insights into the etiology and progression of diseases. Therefore, in the search of a non-invasive HSCR biomarker, we analyzed miRNA expression in urine samples of HSCR patients. Results from 5 HSCR patients using microarrays, revealed hsa-miR-378 h, hsa-miR-210-5p, hsa-miR-6876-3p, hsa-miR-634 and hsa-miR-6883-3p as the most upregulated miRNAs; while hsa-miR-4443, hsa-miR-22-3p, hsa-miR-4732-5p, hsa-miR-3187-5p, and hsa-miR-371b-5p where the most downregulated miRNAs. Further search in miRNAwalk and miRDB databases showed that certainly most of these dysregulated miRNAs identified target HSCR associated genes, such as <i>RET, GDNF, BDNF, EDN3, EDNRB, ERBB, NRG1, SOX10;</i> and other genes implied in neuronal migration and neurogenesis. Finally, we could also validate some of these miRNA changes in HSCR urine by RT-qPCR. Altogether, our analyzed HSCR cohort presents a dysregulated miRNA expression presents that can be detected in urine. Our findings open the possibility of using specific urine miRNA signatures as non-invasive HSCR diagnosis method in the future.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"17 ","pages":"1504424"},"PeriodicalIF":3.5,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic and molecular mechanisms of hydrocephalus. 脑积水的遗传和分子机制。
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-07 eCollection Date: 2024-01-01 DOI: 10.3389/fnmol.2024.1512455
Xuehai Deng, Yiqian Chen, Qiyue Duan, Jianlin Ding, Zhong Wang, Junchi Wang, Xinlong Chen, Liangxue Zhou, Long Zhao

Hydrocephalus is a neurological condition caused by aberrant circulation and/or obstructed cerebrospinal fluid (CSF) flow after cerebral ventricle abnormal dilatation. In the past 50 years, the diagnosis and treatment of hydrocephalus have remained understudied and underreported, and little progress has been made with respect to prevention or treatment. Further research on the pathogenesis of hydrocephalus is essential for developing new diagnostic, preventive, and therapeutic strategies. Various genetic and molecular abnormalities contribute to the mechanisms of hydrocephalus, including gene deletions or mutations, the activation of cellular inflammatory signaling pathways, alterations in water channel proteins, and disruptions in iron metabolism. Several studies have demonstrated that modulating the expression of key proteins, including TGF-β, VEGF, Wnt, AQP, NF-κB, and NKCC, can significantly influence the onset and progression of hydrocephalus. This review summarizes and discusses key mechanisms that may be involved in the pathogenesis of hydrocephalus at both the genetic and molecular levels. While obstructive hydrocephalus can often be addressed by removing the obstruction, most cases require treatment strategies that involve merely slowing disease progression by correcting CSF circulation patterns. There have been few new research breakthroughs in the prevention and treatment of hydrocephalus.

脑积水是脑室异常扩张后循环异常和/或脑脊液(CSF)流动受阻引起的一种神经系统疾病。在过去的50 年里,脑积水的诊断和治疗仍然没有得到充分的研究和报道,在预防或治疗方面几乎没有取得进展。进一步研究脑积水的发病机制对于制定新的诊断、预防和治疗策略至关重要。多种遗传和分子异常导致脑积水的机制,包括基因缺失或突变、细胞炎症信号通路的激活、水通道蛋白的改变和铁代谢的中断。多项研究表明,调节关键蛋白TGF-β、VEGF、Wnt、AQP、NF-κB、NKCC的表达可显著影响脑积水的发生和发展。本文从遗传和分子两方面对脑积水的发病机制进行了综述和讨论。虽然梗阻性脑积水通常可以通过去除梗阻来解决,但大多数病例需要的治疗策略仅仅是通过纠正脑脊液循环模式来减缓疾病进展。在脑积水的预防和治疗方面,很少有新的研究突破。
{"title":"Genetic and molecular mechanisms of hydrocephalus.","authors":"Xuehai Deng, Yiqian Chen, Qiyue Duan, Jianlin Ding, Zhong Wang, Junchi Wang, Xinlong Chen, Liangxue Zhou, Long Zhao","doi":"10.3389/fnmol.2024.1512455","DOIUrl":"10.3389/fnmol.2024.1512455","url":null,"abstract":"<p><p>Hydrocephalus is a neurological condition caused by aberrant circulation and/or obstructed cerebrospinal fluid (CSF) flow after cerebral ventricle abnormal dilatation. In the past 50 years, the diagnosis and treatment of hydrocephalus have remained understudied and underreported, and little progress has been made with respect to prevention or treatment. Further research on the pathogenesis of hydrocephalus is essential for developing new diagnostic, preventive, and therapeutic strategies. Various genetic and molecular abnormalities contribute to the mechanisms of hydrocephalus, including gene deletions or mutations, the activation of cellular inflammatory signaling pathways, alterations in water channel proteins, and disruptions in iron metabolism. Several studies have demonstrated that modulating the expression of key proteins, including TGF-β, VEGF, Wnt, AQP, NF-κB, and NKCC, can significantly influence the onset and progression of hydrocephalus. This review summarizes and discusses key mechanisms that may be involved in the pathogenesis of hydrocephalus at both the genetic and molecular levels. While obstructive hydrocephalus can often be addressed by removing the obstruction, most cases require treatment strategies that involve merely slowing disease progression by correcting CSF circulation patterns. There have been few new research breakthroughs in the prevention and treatment of hydrocephalus.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"17 ","pages":"1512455"},"PeriodicalIF":3.5,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11746911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of auditory neuropathy spectrum disorders associated with the TEME43 variant reveals impaired gap junction function of iPSC-derived glia-like support cells. 与TEME43变异相关的听神经病变谱系障碍的建模显示ipsc衍生的胶质样支持细胞的间隙连接功能受损。
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-06 eCollection Date: 2024-01-01 DOI: 10.3389/fnmol.2024.1457874
Xiaoming Kang, Lu Ma, Jie Wen, Wei Gong, Xianlin Liu, Yihan Hu, Zhili Feng, Qiancheng Jing, Yuexiang Cai, Sijun Li, Xinzhang Cai, Kai Yuan, Yong Feng

Auditory neuropathy spectrum disorder (ANSD) is an auditory dysfunction disorder characterized by impaired speech comprehension. Its etiology is complex and can be broadly categorized into genetic and non-genetic factors. TMEM43 mutation is identified as a causative factor in ANSD. While some studies have been conducted using animal models, its pathogenic mechanisms in humans remain unclear. TMEM43 is predominantly expressed in cochlear glia-like support cells (GLSs) and plays a vital role in gap junction intercellular communication. In this work, we utilized induced pluripotent stem cells from an ANSD patient carrying the TMEM43 gene mutation c.1114C>T (p.Arg372Ter) and directed their differentiation toward GLSs to investigate the effect of TMEM43 mutation on the function of gap junctions in cochlear GLSs in vitro. Reduced expression of genes associated with GLSs characteristics and reduced gap junction intercellular communication in TMEM43 mutant cell lines were observed compared to controls. Transcriptome analysis revealed that differentially expressed genes were significantly enriched in pathways related to cell proliferation, differentiation, extracellular space and adhesion. Furthermore, significant alterations were noted in the PI3K-Akt signaling pathway and the calcium signaling pathway, which could potentially influence gap junction function and contribute to hearing loss. In summary, our study based on patient-derived iPSCs sheds new light on the molecular mechanisms by which TMEM43 mutations may lead to ANSD. These mutations could result in developmental defects in GLSs and a diminished capacity for gap junction function, which may be implicated in the auditory deficits observed in ANSD patients. Our study explored the pathological effects of the TMEM43 mutation and its causal relationship with ANSD using a patient-derived iPSC-based GLSs model, providing a foundation for future mechanistic studies and potential drug screening efforts.

听神经病变谱系障碍(ANSD)是一种以言语理解障碍为特征的听功能障碍。其病因复杂,大致可分为遗传因素和非遗传因素。TMEM43突变被确定为ANSD的致病因素。虽然已经使用动物模型进行了一些研究,但其在人类中的致病机制仍不清楚。TMEM43主要在耳蜗胶质样支持细胞(GLSs)中表达,在间隙连接细胞间通讯中起重要作用。本研究利用一名携带TMEM43基因突变c.1114C>T (p.a g372ter)的ANSD患者的诱导多能干细胞,引导其向gls分化,研究TMEM43突变对体外耳蜗gls间隙连接功能的影响。与对照相比,TMEM43突变细胞系中GLSs特征相关基因的表达减少,间隙连接细胞间通讯减少。转录组分析显示,与细胞增殖、分化、胞外空间和粘附相关的通路中差异表达基因显著富集。此外,PI3K-Akt信号通路和钙信号通路的显著改变可能影响间隙连接功能并导致听力损失。总之,我们基于患者来源的iPSCs的研究揭示了TMEM43突变可能导致ANSD的分子机制。这些突变可能导致gls发育缺陷和间隙连接功能的减弱,这可能与在ANSD患者中观察到的听觉缺陷有关。我们的研究通过基于ipsc的GLSs模型探索了TMEM43突变的病理作用及其与ANSD的因果关系,为未来的机制研究和潜在的药物筛选工作提供了基础。
{"title":"Modeling of auditory neuropathy spectrum disorders associated with the <i>TEME43</i> variant reveals impaired gap junction function of iPSC-derived glia-like support cells.","authors":"Xiaoming Kang, Lu Ma, Jie Wen, Wei Gong, Xianlin Liu, Yihan Hu, Zhili Feng, Qiancheng Jing, Yuexiang Cai, Sijun Li, Xinzhang Cai, Kai Yuan, Yong Feng","doi":"10.3389/fnmol.2024.1457874","DOIUrl":"10.3389/fnmol.2024.1457874","url":null,"abstract":"<p><p>Auditory neuropathy spectrum disorder (ANSD) is an auditory dysfunction disorder characterized by impaired speech comprehension. Its etiology is complex and can be broadly categorized into genetic and non-genetic factors. <i>TMEM43</i> mutation is identified as a causative factor in ANSD. While some studies have been conducted using animal models, its pathogenic mechanisms in humans remain unclear. TMEM43 is predominantly expressed in cochlear glia-like support cells (GLSs) and plays a vital role in gap junction intercellular communication. In this work, we utilized induced pluripotent stem cells from an ANSD patient carrying the <i>TMEM43</i> gene mutation c.1114C>T (p.Arg372Ter) and directed their differentiation toward GLSs to investigate the effect of <i>TMEM43</i> mutation on the function of gap junctions in cochlear GLSs <i>in vitro</i>. Reduced expression of genes associated with GLSs characteristics and reduced gap junction intercellular communication in <i>TMEM43</i> mutant cell lines were observed compared to controls. Transcriptome analysis revealed that differentially expressed genes were significantly enriched in pathways related to cell proliferation, differentiation, extracellular space and adhesion. Furthermore, significant alterations were noted in the PI3K-Akt signaling pathway and the calcium signaling pathway, which could potentially influence gap junction function and contribute to hearing loss. In summary, our study based on patient-derived iPSCs sheds new light on the molecular mechanisms by which <i>TMEM43</i> mutations may lead to ANSD. These mutations could result in developmental defects in GLSs and a diminished capacity for gap junction function, which may be implicated in the auditory deficits observed in ANSD patients. Our study explored the pathological effects of the <i>TMEM43</i> mutation and its causal relationship with ANSD using a patient-derived iPSC-based GLSs model, providing a foundation for future mechanistic studies and potential drug screening efforts.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"17 ","pages":"1457874"},"PeriodicalIF":3.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743952/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Molecular Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1