Material efficiency at the component level: how much metal can we do without?

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Pub Date : 2024-12-02 Epub Date: 2024-11-04 DOI:10.1098/rsta.2023.0245
Julian M Allwood, Omer Music
{"title":"Material efficiency at the component level: how much metal can we do without?","authors":"Julian M Allwood, Omer Music","doi":"10.1098/rsta.2023.0245","DOIUrl":null,"url":null,"abstract":"<p><p>Global production of steel and aluminium is a major driver of greenhouse gas emissions. Various processes might allow continued primary production of the two metals, but all depend on emissions-free electricity or carbon storage, and global capacity of these two key resources will be below demand for decades to come. As a result, zero-emissions steel and aluminium will mainly come from recycling, but supply will be lower than demand. This motivates demand reduction, and for the first time, this article estimates the inefficiency in current metal use by component type. The results demonstrate that around 80% of steel and 90% of aluminium liquid metal produced today may be unnecessary. Around 40% of liquid steel and 60% of liquid aluminium are never used in final components as they are removed along the supply chain of manufacturing. Of the metal that enters final service, approximately one-third could be saved by avoiding component over-specification. A further third could be saved, where the properties of metal are not used to their limits. These results point to specific opportunities for innovation in design and manufacturing technology, of which the highest priority is to re-think the use of sheet metal in construction.This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2284","pages":"20230245"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531901/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0245","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Global production of steel and aluminium is a major driver of greenhouse gas emissions. Various processes might allow continued primary production of the two metals, but all depend on emissions-free electricity or carbon storage, and global capacity of these two key resources will be below demand for decades to come. As a result, zero-emissions steel and aluminium will mainly come from recycling, but supply will be lower than demand. This motivates demand reduction, and for the first time, this article estimates the inefficiency in current metal use by component type. The results demonstrate that around 80% of steel and 90% of aluminium liquid metal produced today may be unnecessary. Around 40% of liquid steel and 60% of liquid aluminium are never used in final components as they are removed along the supply chain of manufacturing. Of the metal that enters final service, approximately one-third could be saved by avoiding component over-specification. A further third could be saved, where the properties of metal are not used to their limits. These results point to specific opportunities for innovation in design and manufacturing technology, of which the highest priority is to re-think the use of sheet metal in construction.This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部件层面的材料效率:我们能少用多少金属?
全球钢铁和铝的生产是温室气体排放的主要驱动力。各种工艺都有可能使这两种金属的初级生产得以继续,但所有工艺都依赖于无排放的电力或碳储存,而这两种关键资源的全球产能在未来几十年内都将低于需求。因此,零排放钢铁和铝将主要来自回收利用,但供应量将低于需求量。因此,本文首次按部件类型估算了当前金属使用的低效率。结果表明,目前生产的约 80% 的钢材和 90% 的铝液金属可能是不必要的。约 40% 的液态钢和 60% 的液态铝从未用于最终组件,因为它们在制造供应链中被移除。在最终投入使用的金属中,约有三分之一可以通过避免部件规格过高而节省下来。如果金属的性能没有发挥到极限,还可以节省三分之一。这些结果为设计和制造技术的创新提供了具体的机会,其中最优先考虑的是重新思考金属板在建筑中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
期刊最新文献
Addressing the urban congestion challenge based on traffic bottlenecks. Analysing macroscopic traffic rhythms and city size in affluent cities: insights from a global panel data of 25 cities. Artefact design and societal worldview. Cities beyond proximity. Mapping sidewalk accessibility with smartphone imagery and Visual AI: a participatory approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1