Abraham Kuri Cruz, Marina Amaral Alves, Thorkell Andresson, Amanda L Bayless, Kent J Bloodsworth, John A Bowden, Kevin Bullock, Meagan C Burnet, Fausto Carnevale Neto, Angelina Choy, Clary B Clish, Sneha P Couvillion, Raquel Cumeras, Lucas Dailey, Guido Dallmann, W Clay Davis, Amy A Deik, Alex M Dickens, Danijel Djukovic, Pieter C Dorrestein, Josie G Eder, Oliver Fiehn, Roberto Flores, Helen Gika, Kehau A Hagiwara, Tuan Hai Pham, James J Harynuk, Juan J Aristizabal-Henao, David W Hoyt, Focant Jean-François, Matilda Kråkström, Amit Kumar, Jennifer E Kyle, Santosh Lamichhane, Yuan Li, Seo Lin Nam, Rupasri Mandal, A Paulina de la Mata, Michael J Meehan, Thomas Meikopoulos, Thomas O Metz, Thomai Mouskeftara, Nathalie Munoz, G A Nagana Gowda, Matej Orešic, Morgan Panitchpakdi, Stefanuto Pierre-Hugues, Daniel Raftery, Blake Rushing, Tracey Schock, Harold Seifried, Stephanie Servetas, Tong Shen, Susan Sumner, Kieran S Tarazona Carrillo, Dejong Thibaut, Jesse B Trejo, Lieven Van Meulebroek, Lynn Vanhaecke, Christina Virgiliou, Kelly C Weldon, David S Wishart, Lu Zhang, Jiamin Zheng, Sandra Da Silva
{"title":"Multiplatform metabolomic interlaboratory study of a whole human stool candidate reference material from omnivore and vegan donors.","authors":"Abraham Kuri Cruz, Marina Amaral Alves, Thorkell Andresson, Amanda L Bayless, Kent J Bloodsworth, John A Bowden, Kevin Bullock, Meagan C Burnet, Fausto Carnevale Neto, Angelina Choy, Clary B Clish, Sneha P Couvillion, Raquel Cumeras, Lucas Dailey, Guido Dallmann, W Clay Davis, Amy A Deik, Alex M Dickens, Danijel Djukovic, Pieter C Dorrestein, Josie G Eder, Oliver Fiehn, Roberto Flores, Helen Gika, Kehau A Hagiwara, Tuan Hai Pham, James J Harynuk, Juan J Aristizabal-Henao, David W Hoyt, Focant Jean-François, Matilda Kråkström, Amit Kumar, Jennifer E Kyle, Santosh Lamichhane, Yuan Li, Seo Lin Nam, Rupasri Mandal, A Paulina de la Mata, Michael J Meehan, Thomas Meikopoulos, Thomas O Metz, Thomai Mouskeftara, Nathalie Munoz, G A Nagana Gowda, Matej Orešic, Morgan Panitchpakdi, Stefanuto Pierre-Hugues, Daniel Raftery, Blake Rushing, Tracey Schock, Harold Seifried, Stephanie Servetas, Tong Shen, Susan Sumner, Kieran S Tarazona Carrillo, Dejong Thibaut, Jesse B Trejo, Lieven Van Meulebroek, Lynn Vanhaecke, Christina Virgiliou, Kelly C Weldon, David S Wishart, Lu Zhang, Jiamin Zheng, Sandra Da Silva","doi":"10.1007/s11306-024-02185-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Human metabolomics has made significant strides in understanding metabolic changes and their implications for human health, with promising applications in diagnostics and treatment, particularly regarding the gut microbiome. However, progress is hampered by issues with data comparability and reproducibility across studies, limiting the translation of these discoveries into practical applications.</p><p><strong>Objectives: </strong>This study aims to evaluate the fit-for-purpose of a suite of human stool samples as potential candidate reference materials (RMs) and assess the state of the field regarding harmonizing gut metabolomics measurements.</p><p><strong>Methods: </strong>An interlaboratory study was conducted with 18 participating institutions. The study allowed for the use of preferred analytical techniques, including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR).</p><p><strong>Results: </strong>Different laboratories used various methods and analytical platforms to identify the metabolites present in human stool RM samples. The study found a 40% to 70% recurrence in the reported top 20 most abundant metabolites across the four materials. In the full annotation list, the percentage of metabolites reported multiple times after nomenclature standardization was 36% (LC-MS), 58% (GC-MS) and 76% (NMR). Out of 9,300 unique metabolites, only 37 were reported across all three measurement techniques.</p><p><strong>Conclusion: </strong>This collaborative exercise emphasized the broad chemical survey possible with multi-technique approaches. Community engagement is essential for the evaluation and characterization of common materials designed to facilitate comparability and ensure data quality underscoring the value of determining current practices, challenges, and progress of a field through interlaboratory studies.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"125"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-024-02185-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Human metabolomics has made significant strides in understanding metabolic changes and their implications for human health, with promising applications in diagnostics and treatment, particularly regarding the gut microbiome. However, progress is hampered by issues with data comparability and reproducibility across studies, limiting the translation of these discoveries into practical applications.
Objectives: This study aims to evaluate the fit-for-purpose of a suite of human stool samples as potential candidate reference materials (RMs) and assess the state of the field regarding harmonizing gut metabolomics measurements.
Methods: An interlaboratory study was conducted with 18 participating institutions. The study allowed for the use of preferred analytical techniques, including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR).
Results: Different laboratories used various methods and analytical platforms to identify the metabolites present in human stool RM samples. The study found a 40% to 70% recurrence in the reported top 20 most abundant metabolites across the four materials. In the full annotation list, the percentage of metabolites reported multiple times after nomenclature standardization was 36% (LC-MS), 58% (GC-MS) and 76% (NMR). Out of 9,300 unique metabolites, only 37 were reported across all three measurement techniques.
Conclusion: This collaborative exercise emphasized the broad chemical survey possible with multi-technique approaches. Community engagement is essential for the evaluation and characterization of common materials designed to facilitate comparability and ensure data quality underscoring the value of determining current practices, challenges, and progress of a field through interlaboratory studies.
期刊介绍:
Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to:
metabolomic applications within man, including pre-clinical and clinical
pharmacometabolomics for precision medicine
metabolic profiling and fingerprinting
metabolite target analysis
metabolomic applications within animals, plants and microbes
transcriptomics and proteomics in systems biology
Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.