Controllable p-type doping and improved conductance of few-layer WSe2via Lewis acid.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-11-13 DOI:10.1088/1361-6528/ad8e45
Mengge Li, Tianjian Ou, Cong Xiao, Zhanjie Qiu, Xiaoxiang Wu, Wenxuan Guo, Yuan Zheng, Hancheng Yang, Yewu Wang
{"title":"Controllable p-type doping and improved conductance of few-layer WSe<sub>2</sub>via Lewis acid.","authors":"Mengge Li, Tianjian Ou, Cong Xiao, Zhanjie Qiu, Xiaoxiang Wu, Wenxuan Guo, Yuan Zheng, Hancheng Yang, Yewu Wang","doi":"10.1088/1361-6528/ad8e45","DOIUrl":null,"url":null,"abstract":"<p><p>Manipulation of the electronic properties of layered transition-metal dichalcogenides (TMDs) is of fundamental significance for a wide range of electronic and optoelectronic applications. Surface charge transfer doping is considered to be a powerful technique to regulate the carrier density of TMDs. Herein, the controllable p-type surface modification of few-layer WSe<sub>2</sub>by FeCl<sub>3</sub>Lewis acid with different doping concentrations have been achieved. Effective hole doping of WSe<sub>2</sub>has been demonstrated using Raman spectra and XPS. Transport properties indicated the p-type FeCl<sub>3</sub>surface functionalization significantly increased the hole concentration with 1.2 × 10<sup>13</sup>cm<sup>-2</sup>, resulting in 6 orders of magnitude improvement for the conductance of FeCl<sub>3</sub>-modified WSe<sub>2</sub>compared with pristine WSe<sub>2</sub>. This work provides a promising approach and facilitate the further advancement of TMDs in electronic and optoelectronic applications.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad8e45","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Manipulation of the electronic properties of layered transition-metal dichalcogenides (TMDs) is of fundamental significance for a wide range of electronic and optoelectronic applications. Surface charge transfer doping is considered to be a powerful technique to regulate the carrier density of TMDs. Herein, the controllable p-type surface modification of few-layer WSe2by FeCl3Lewis acid with different doping concentrations have been achieved. Effective hole doping of WSe2has been demonstrated using Raman spectra and XPS. Transport properties indicated the p-type FeCl3surface functionalization significantly increased the hole concentration with 1.2 × 1013cm-2, resulting in 6 orders of magnitude improvement for the conductance of FeCl3-modified WSe2compared with pristine WSe2. This work provides a promising approach and facilitate the further advancement of TMDs in electronic and optoelectronic applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过路易斯酸实现可控 P 型掺杂并提高少层 WSe2 的电导率。
操纵层状过渡金属二掺杂化合物(TMDs)的电子特性对于广泛的电子和光电应用具有重要意义。表面电荷转移掺杂被认为是调节 TMD 载流子密度的有力技术。在此,我们利用不同掺杂浓度的 FeCl3 Lewis 酸实现了对少层 WSe2 的可控 p 型表面修饰。拉曼光谱和 XPS 证明了 WSe2 的有效空穴掺杂。传输特性表明,P 型 FeCl3 表面官能化显著提高了空穴浓度(1.2×1013 cm-2),使 FeCl3 改性 WSe2 的电导率比原始 WSe2 提高了 6 个数量级。这项工作提供了一种前景广阔的方法,有助于进一步推动 TMDs 在电子和光电领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Friction-enhanced formation of Cu microwire on Si wafer. Quantum dots synthesis within ternary III-V nanowire towards light emitters in quantum photonic circuits: a review. Mapping nanoparticle formation and substrate heating effects: a fluence-resolved approach to pulsed laser-induced dewetting. Understanding the competing growth of 2D and 3D transition metal dichalcogenides in a chemical vapor deposition (CVD) reactor. Thermal expansion of boron nitride nanotubes and additively manufactured ceramic nanocomposites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1