Natural variation in OsMADS1 transcript splicing affects rice grain thickness and quality by influencing monosaccharide loading to the endosperm.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Communications Pub Date : 2025-01-13 Epub Date: 2024-10-28 DOI:10.1016/j.xplc.2024.101178
Rongjia Liu, Da Zhao, Pingbo Li, Duo Xia, Qingfei Feng, Lu Wang, Yipei Wang, Huan Shi, Yin Zhou, Fangying Chen, Guangming Lou, Hanyuan Yang, Haozhou Gao, Bian Wu, Junxiao Chen, Guanjun Gao, Qinglu Zhang, Jinghua Xiao, Xianghua Li, Lizhong Xiong, Yibo Li, Zichao Li, Aiqing You, Yuqing He
{"title":"Natural variation in OsMADS1 transcript splicing affects rice grain thickness and quality by influencing monosaccharide loading to the endosperm.","authors":"Rongjia Liu, Da Zhao, Pingbo Li, Duo Xia, Qingfei Feng, Lu Wang, Yipei Wang, Huan Shi, Yin Zhou, Fangying Chen, Guangming Lou, Hanyuan Yang, Haozhou Gao, Bian Wu, Junxiao Chen, Guanjun Gao, Qinglu Zhang, Jinghua Xiao, Xianghua Li, Lizhong Xiong, Yibo Li, Zichao Li, Aiqing You, Yuqing He","doi":"10.1016/j.xplc.2024.101178","DOIUrl":null,"url":null,"abstract":"<p><p>Grain size, which encompasses grain length, width, and thickness, is a critical determinant of both grain weight and quality in rice. Despite the extensive regulatory networks known to determine grain length and width, the pathway(s) that regulate grain thickness remain to be clarified. Here, we present the map-based cloning and characterization of qGT3, a major quantitative trait locus for grain thickness in rice that encodes the MADS-domain transcription factor OsMADS1. Our findings demonstrate that OsMADS1 regulates grain thickness by affecting sugar delivery during grain filling, and we show that OsMADS1 modulates expression of the downstream monosaccharide transporter gene MST4. A natural variant leads to alternative splicing and thus to a truncated OsMADS1 protein with attenuated transcriptional repressor activity. The truncated OsMADS1 protein results in increased expression of MST4, leading to enhanced loading of monosaccharides into the developing endosperm and thereby increasing grain thickness and improving grain quality. In addition, our results reveal that NF-YB1 and NF-YC12 interact directly with OsMADS1, acting as cofactors to enhance its transcriptional activity toward MST4. Collectively, these findings reveal a novel molecular mechanism underlying grain thickness regulation that is controlled by the OsMADS1-NF-YB1-YC12 complex and has great potential for synergistic improvement of grain yield and quality in rice.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101178"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783882/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2024.101178","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Grain size, which encompasses grain length, width, and thickness, is a critical determinant of both grain weight and quality in rice. Despite the extensive regulatory networks known to determine grain length and width, the pathway(s) that regulate grain thickness remain to be clarified. Here, we present the map-based cloning and characterization of qGT3, a major quantitative trait locus for grain thickness in rice that encodes the MADS-domain transcription factor OsMADS1. Our findings demonstrate that OsMADS1 regulates grain thickness by affecting sugar delivery during grain filling, and we show that OsMADS1 modulates expression of the downstream monosaccharide transporter gene MST4. A natural variant leads to alternative splicing and thus to a truncated OsMADS1 protein with attenuated transcriptional repressor activity. The truncated OsMADS1 protein results in increased expression of MST4, leading to enhanced loading of monosaccharides into the developing endosperm and thereby increasing grain thickness and improving grain quality. In addition, our results reveal that NF-YB1 and NF-YC12 interact directly with OsMADS1, acting as cofactors to enhance its transcriptional activity toward MST4. Collectively, these findings reveal a novel molecular mechanism underlying grain thickness regulation that is controlled by the OsMADS1-NF-YB1-YC12 complex and has great potential for synergistic improvement of grain yield and quality in rice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OsMADS1 转录本剪接的自然变异通过影响胚乳中的单糖含量来影响水稻籽粒的粗细和品质。
谷粒大小是决定水稻粒重和品质的关键因素,包括谷粒长度、宽度和厚度。尽管决定谷粒长度和宽度的调控网络非常广泛,但谷粒厚度的调控途径仍未得到阐明。在这里,我们基于图谱克隆并鉴定了水稻谷粒粗度的主要数量性状基因座 qGT3,该基因座编码 MADS 域转录因子 OsMADS1。我们的研究结果表明,OsMADS1 通过影响谷粒灌浆期的糖分输送来调节谷粒粗细。我们进一步发现,OsMADS1 可调节下游单糖转运体基因 MST4 的表达。值得注意的是,自然变异会导致替代剪接,从而产生具有减弱转录抑制活性的截短 OsMADS1 蛋白。截短的 OsMADS1 蛋白会增加 MST4 的表达,从而提高发育中胚乳中单糖的负载量,增加谷粒厚度,改善谷粒品质。此外,我们的研究结果表明,NF-YB1 和 NF-YC12 与 OsMADS1 直接相互作用,作为辅助因子增强其对 MST4 的转录活性。总之,这些发现揭示了由 OsMADS1-NF-YB1-YC12 复合物控制的谷粒粗度调控的新分子机制,该机制在协同提高水稻谷粒产量和品质方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Communications
Plant Communications Agricultural and Biological Sciences-Plant Science
CiteScore
15.70
自引率
5.70%
发文量
105
审稿时长
6 weeks
期刊介绍: Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.
期刊最新文献
Two duplicated GhMML3 genes coordinately control cotton lint and fuzz fiber development. SHATTERING ABORTION3 controls rice seed shattering by promoting abscission zone separation. Breeding herbicide-resistant rice using CRISPR-Cas gene editing and other technologies. Precise customization of plant architecture by combinatorial genetic modification of peptide ligands. An enhancer-transposable element from purple leaf tea varieties underlies the transition from evergreen to purple leaf color.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1