Yuanping Luo , Song Yuan , Minjie Zhu , Zongwen Zhang , Beijun Cheng , Wenjun Xu , Zhili Peng
{"title":"Poria cocos-derived carbon dots for parallel detection of Cr6+/Fe3+ in complex environments with superior sensitivity","authors":"Yuanping Luo , Song Yuan , Minjie Zhu , Zongwen Zhang , Beijun Cheng , Wenjun Xu , Zhili Peng","doi":"10.1016/j.saa.2024.125346","DOIUrl":null,"url":null,"abstract":"<div><div>Multifunctional sensor capable of parallel sensing is of great importance thanks to their wide applications and great practicality. In this report, <em>Poria cocos</em>-derived carbon dots (CDs) were adopted for the development of multifunctional sensor for the parallel detection of Cr<sup>6+</sup> and Fe<sup>3+</sup> with superior sensitivity and applicability. Specifically, extremely low limit of detection (LOD) of 1.07 × 10<sup>−3</sup> nM and 1.98 × 10<sup>−3</sup> nM were achieved for Cr<sup>6+</sup> and Fe<sup>3+</sup>, respectively. Systematic mechanism explorations revealed that the highly sensitive detection of Cr<sup>6+</sup> was attributed to an efficient inner filter effect (IFE), while the sensing of Fe<sup>3+</sup> was realized due to a strong static quenching process. Furthermore, the assay was found to be extremely versatile, achieving the reliable detection of Cr<sup>6+</sup> and Fe<sup>3+</sup> in multiple natural water environments and even biological environment. Utilizing the different reactions of Cr<sup>6+</sup> and Fe<sup>3+</sup> towards masking reagents, a logic gate that could effectively eliminate the mutual interference of Cr<sup>6+</sup> and Fe<sup>3+</sup> was successfully designed.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"327 ","pages":"Article 125346"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524015129","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Multifunctional sensor capable of parallel sensing is of great importance thanks to their wide applications and great practicality. In this report, Poria cocos-derived carbon dots (CDs) were adopted for the development of multifunctional sensor for the parallel detection of Cr6+ and Fe3+ with superior sensitivity and applicability. Specifically, extremely low limit of detection (LOD) of 1.07 × 10−3 nM and 1.98 × 10−3 nM were achieved for Cr6+ and Fe3+, respectively. Systematic mechanism explorations revealed that the highly sensitive detection of Cr6+ was attributed to an efficient inner filter effect (IFE), while the sensing of Fe3+ was realized due to a strong static quenching process. Furthermore, the assay was found to be extremely versatile, achieving the reliable detection of Cr6+ and Fe3+ in multiple natural water environments and even biological environment. Utilizing the different reactions of Cr6+ and Fe3+ towards masking reagents, a logic gate that could effectively eliminate the mutual interference of Cr6+ and Fe3+ was successfully designed.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.