EXPOSURE EFFECTS ON COUNT OUTCOMES WITH OBSERVATIONAL DATA, WITH APPLICATION TO INCARCERATED WOMEN.

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Statistics Pub Date : 2024-09-01 Epub Date: 2024-08-05 DOI:10.1214/24-aoas1874
Bonnie E Shook-Sa, Michael G Hudgens, Andrea K Knittel, Andrew Edmonds, Catalina Ramirez, Stephen R Cole, Mardge Cohen, Adebola Adedimeji, Tonya Taylor, Katherine G Michel, Andrea Kovacs, Jennifer Cohen, Jessica Donohue, Antonina Foster, Margaret A Fischl, Dustin Long, Adaora A Adimora
{"title":"EXPOSURE EFFECTS ON COUNT OUTCOMES WITH OBSERVATIONAL DATA, WITH APPLICATION TO INCARCERATED WOMEN.","authors":"Bonnie E Shook-Sa, Michael G Hudgens, Andrea K Knittel, Andrew Edmonds, Catalina Ramirez, Stephen R Cole, Mardge Cohen, Adebola Adedimeji, Tonya Taylor, Katherine G Michel, Andrea Kovacs, Jennifer Cohen, Jessica Donohue, Antonina Foster, Margaret A Fischl, Dustin Long, Adaora A Adimora","doi":"10.1214/24-aoas1874","DOIUrl":null,"url":null,"abstract":"<p><p>Causal inference methods can be applied to estimate the effect of a point exposure or treatment on an outcome of interest using data from observational studies. For example, in the Women's Interagency HIV Study, it is of interest to understand the effects of incarceration on the number of sexual partners and the number of cigarettes smoked after incarceration. In settings like this where the outcome is a count, the estimand is often the causal mean ratio, i.e., the ratio of the counterfactual mean count under exposure to the counterfactual mean count under no exposure. This paper considers estimators of the causal mean ratio based on inverse probability of treatment weights, the parametric g-formula, and doubly robust estimation, each of which can account for overdispersion, zero-inflation, and heaping in the measured outcome. Methods are compared in simulations and are applied to data from the Women's Interagency HIV Study.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 3","pages":"2147-2165"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526847/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/24-aoas1874","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Causal inference methods can be applied to estimate the effect of a point exposure or treatment on an outcome of interest using data from observational studies. For example, in the Women's Interagency HIV Study, it is of interest to understand the effects of incarceration on the number of sexual partners and the number of cigarettes smoked after incarceration. In settings like this where the outcome is a count, the estimand is often the causal mean ratio, i.e., the ratio of the counterfactual mean count under exposure to the counterfactual mean count under no exposure. This paper considers estimators of the causal mean ratio based on inverse probability of treatment weights, the parametric g-formula, and doubly robust estimation, each of which can account for overdispersion, zero-inflation, and heaping in the measured outcome. Methods are compared in simulations and are applied to data from the Women's Interagency HIV Study.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过观察数据分析暴露对计数结果的影响,并将其应用于被监禁妇女。
因果推理方法可用于利用观察性研究的数据估算点暴露或治疗对相关结果的影响。例如,在 "妇女机构间艾滋病研究"(Women's Interagency HIV Study)中,我们有兴趣了解监禁对监禁后性伴侣数量和吸烟数量的影响。在这种结果为计数的情况下,估计值通常为因果平均比率,即暴露情况下的反事实平均计数与不暴露情况下的反事实平均计数之比。本文考虑了基于逆概率处理权重、参数 g 公式和双重稳健估计的因果平均比率估计方法,每种方法都可以考虑测量结果中的过度分散、零膨胀和堆叠。通过模拟对这些方法进行了比较,并将其应用于妇女机构间艾滋病毒研究的数据中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
期刊最新文献
PATIENT RECRUITMENT USING ELECTRONIC HEALTH RECORDS UNDER SELECTION BIAS: A TWO-PHASE SAMPLING FRAMEWORK. A NONPARAMETRIC MIXED-EFFECTS MIXTURE MODEL FOR PATTERNS OF CLINICAL MEASUREMENTS ASSOCIATED WITH COVID-19. A bootstrap model comparison test for identifying genes with context-specific patterns of genetic regulation. BIVARIATE FUNCTIONAL PATTERNS OF LIFETIME MEDICARE COSTS AMONG ESRD PATIENTS. EXPOSURE EFFECTS ON COUNT OUTCOMES WITH OBSERVATIONAL DATA, WITH APPLICATION TO INCARCERATED WOMEN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1